Project 1

- Soundblaster! Reverse a song
 - a.k.a., “backmasking”
- Implement a stack to make the “Reverse” program work
 - Implement as array and as linked list
- **Read the website**
 - Detailed description of assignment
 - Detailed description of how programming projects are graded
- Due by: Midnight (11:59 +ε PM PDT, ε<0:01), April 9
 - Electronic submission

Other announcements

- Both sections are now in EE 025.
- Homework requires you get the textbook (it’s a good book).
- Laura rocks.
- Homework #1 is now assigned.
 - Due at the beginning of class next Friday (April 11).

Algorithm Analysis

- **Correctness**:
 - Does the algorithm do what is intended.
- **Performance**:
 - Speed *time complexity*
 - Memory *space complexity*
- **Why analyze?**
 - To make good design decisions
 - Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.
Correctness

Correctness of an algorithm is established by proof. Common approaches:

- (Dis)proof by counterexample
- Proof by contradiction
- Proof by induction
 - Especially useful in recursive algorithms

Proof by Induction

- **Base Case:** The algorithm is correct for a base case or two by inspection.

- **Inductive Hypothesis (n=k):** Assume that the algorithm works correctly for the first k cases.

- **Inductive Step (n=k+1):** Given the hypothesis above, show that the k+1 case will be calculated correctly.

Recursive algorithm for *sum*

- Write a *recursive* function to find the sum of the first n integers stored in array v.

```
sum(integer array v, integer n) returns integer
if n = 0 then
  sum = 0
else
  sum = nth number + sum of first n-1 numbers
return sum
```

Program Correctness by Induction

- **Base Case:**
 \[\text{sum}(v,0) = 0. \checkmark \]

- **Inductive Hypothesis (n=k):** Assume \[\text{sum}(v,k) \] correctly returns sum of first k elements of v, i.e. \(v[0]+v[1]+...+v[k-1] \)

- **Inductive Step (n=k+1):**
 \[\text{sum}(v,k+1) \] returns
 \[v[k]+\text{sum}(v,k) = (\text{by inductive hyp.}) \]
 \[v[k]+(v[0]+v[1]+...+v[k-1]) = v[0]+v[1]+...+v[k-1]+v[k] \checkmark \]
Analyzing Performance

We will focus on analyzing time complexity. First, we have some “rules” to help measure how long it takes to do things:

- **Basic operations** Constant time
- **Consecutive statements** Sum of times
- **Conditionals** Test, plus larger branch cost
- **Loops** Sum of iterations
- **Function calls** Cost of function body
- **Recursive functions** Solve recurrence relation...

Second, we will be interested in **best** and **worst** case performance.

Complexity cases

We’ll start by focusing on two cases.

- **Problem size N**
 - **Worst-case complexity**: max # steps algorithm takes on “most challenging” input of size N
 - **Best-case complexity**: min # steps algorithm takes on “easiest” input of size N

Exercise - Searching

```cpp
bool ArrayFind( int array[], int n, int key) {
    // Insert your algorithm here
    return false;
}
```

What algorithm would you choose to implement this code snippet?

Linear Search Analysis

```cpp
bool LinearArrayFind(int array[], int n, int key) {
    for( int i = 0; i < n; i++ ) {
        if( array[i] == key ) {
            // Found it!
            return true;
        }
    }
    return false;
}
```

Best Case:

Worst Case:
Binary Search Analysis

bool BinArrayFind(int array[], int low, int high, int key) {
 // The subarray is empty
 if(low > high) return false;

 // Search this subarray recursively
 int mid = (high + low) / 2;
 if(key == array[mid]) {
 return true;
 } else if(key < array[mid]) {
 return BinArrayFind(array, low, mid-1, key);
 } else {
 return BinArrayFind(array, mid+1, high, key);
 }
}

Best case:

Worst case:

Solving Recurrence Relations

1. Determine the recurrence relation. What is/are the base case(s)?

2. “Expand” the original relation to find an equivalent general expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case.

Linear Search vs Binary Search

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worst Case</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Linear Search vs Binary Search

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worst Case</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
 - A valuable tool when the input gets “large”
 - Ignores the effects of different machines or different implementations of same algorithm
- Comparing worst case search examples:
 \[T_{\text{LS worst}}(n) = 3n + 3 \quad \text{vs.} \quad T_{\text{BS worst}}(n) = 5\lfloor \log_2 n \rfloor + 7 \]
Asymptotic Analysis

• Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms

 – Linear search is $\mathcal{T}_{\text{worst}}^{LS}(n) = 3n + 3 \in O(n)$

 – Binary search is $\mathcal{T}_{\text{worst}}^{BS}(n) = 5\lfloor \log_2 n \rfloor + 7 \in O(\log n)$

Remember: the “fastest” algorithm has the slowest growing function for its runtime

Eliminate low order terms

- $4n + 5 \Rightarrow$
- $0.5n \log n + 2n + 7 \Rightarrow$
- $n^3 + 3 \cdot 2^n + 8n \Rightarrow$

Eliminate coefficients

- $4n \Rightarrow$
- $0.5n \log n \Rightarrow$
- $3 \cdot 2^n \Rightarrow$

Properties of Logs

Basic:
- $A^{\log_A(B)} = B$
- $\log_A(A) = 1$

Independent of base:
- $\log(AB) = \log(A) + \log(B)$
- $\log(A/B) = \log(A) - \log(B)$
- $\log(A^B) = B \log(A)$
- $\log((A^B)^C) = C \log(A^B)$

$\log_A(B)$ vs. $\log_C(B)$?
Another example

- Eliminate low-order terms

 \[16n^3 \log_8(10n^2) + 100n^2 \]

- Eliminate constant coefficients

Order Notation: Intuition

\[a(n) = n^3 + 2n^2 \]

\[b(n) = 100n^2 + 1000 \]

Although not yet apparent, as \(n \) gets “sufficiently large”, \(a(n) \) will be “greater than or equal to” \(b(n) \)

Definition of Order Notation

- **Upper bound**: \(h(n) \in O(f(n)) \)

 Exist positive constants \(c \) and \(n_0 \) such that

 \(h(n) \leq c f(n) \) for all \(n \geq n_0 \)

- **Lower bound**: \(h(n) \in \Omega(g(n)) \)

 Exist positive constants \(c \) and \(n_0 \) such that

 \(h(n) \geq c g(n) \) for all \(n \geq n_0 \)

- **Tight bound**: \(h(n) \in \Theta(f(n)) \)

 When both hold:

 \(h(n) \in O(f(n)) \)

 \(h(n) \in \Omega(f(n)) \)

Definition of Order Notation

\(O(f(n)) \) : a set or class of functions

\[h(n) \in O(f(n)) \quad \text{iff there exist positive constants } c \text{ and } n_0 \text{ such that:} \]

\[h(n) \leq c f(n) \text{ for all } n \geq n_0 \]

Example:

\[100n^2 + 1000 \leq 1/2 \left(n^3 + 2n^2 \right) \text{ for all } n \geq 198 \]

So \(b(n) \in O(a(n)) \)
Order Notation: Example

\[100n^2 + 1000 \leq 1/2 (n^3 + 2n^2) \text{ for all } n \geq 198 \]

So \(b(n) \in O(a(n)) \)

Some Notes on Notation

Sometimes you’ll see (e.g., in Weiss)

\[h(n) = O(f(n)) \]

or

\[h(n) \text{ is } O(f(n)) \]

These are equivalent to

\[h(n) \in O(f(n)) \]

Big-O: Common Names

- constant: \(O(1) \)
- logarithmic: \(O(\log n) \) \((\log n, \log n^2 \in O(\log n))\)
- linear: \(O(n) \)
- log-linear: \(O(n \log n) \)
- quadratic: \(O(n^2) \)
- cubic: \(O(n^3) \)
- polynomial: \(O(n^k) \) \((k \text{ is a constant})\)
- exponential: \(O(c^n) \) \((c \text{ is a constant } > 1)\)
Meet the Family

- \(O(f(n)) \) is the set of all functions asymptotically less than or equal to \(f(n) \)
- \(o(f(n)) \) is the set of all functions asymptotically strictly less than \(f(n) \)
- \(\Omega(g(n)) \) is the set of all functions asymptotically greater than or equal to \(g(n) \)
- \(\omega(g(n)) \) is the set of all functions asymptotically strictly greater than \(g(n) \)
- \(\theta(f(n)) \) is the set of all functions asymptotically equal to \(f(n) \)

Meet the Family, Formally

- \(h(n) \in O(f(n)) \) iff There exist \(c>0 \) and \(n_0>0 \) such that \(h(n) \leq c f(n) \) for all \(n \geq n_0 \)
- \(h(n) \in o(f(n)) \) iff There exists an \(n_0>0 \) such that \(h(n) < c f(n) \) for all \(c>0 \) and \(n \geq n_0 \)
 - This is equivalent to: \(\lim_{n \to \infty} h(n)/f(n) = 0 \)
- \(h(n) \in \Omega(g(n)) \) iff There exist \(c>0 \) and \(n_0>0 \) such that \(h(n) \geq c g(n) \) for all \(n \geq n_0 \)
- \(h(n) \in \omega(g(n)) \) iff There exists an \(n_0>0 \) such that \(h(n) > c g(n) \) for all \(c>0 \) and \(n \geq n_0 \)
 - This is equivalent to: \(\lim_{n \to \infty} h(n)/g(n) = \infty \)
- \(h(n) \in \theta(f(n)) \) iff \(h(n) \in O(f(n)) \) and \(h(n) \in \Omega(f(n)) \)
 - This is equivalent to: \(\lim_{n \to \infty} h(n)/f(n) = c \neq 0 \)

Big-Omega et al. Intuitively

<table>
<thead>
<tr>
<th>Asymptotic Notation</th>
<th>Mathematics Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O)</td>
<td>(\leq)</td>
</tr>
<tr>
<td>(\Omega)</td>
<td>(\geq)</td>
</tr>
<tr>
<td>(\theta)</td>
<td>=</td>
</tr>
<tr>
<td>(o)</td>
<td><</td>
</tr>
<tr>
<td>(\omega)</td>
<td>></td>
</tr>
</tbody>
</table>

Complexity cases (revisited)

Problem size \(N \)

- **Worst-case complexity**: \(\text{max} \) # steps algorithm takes on “most challenging” input of size \(N \)
- **Best-case complexity**: \(\text{min} \) # steps algorithm takes on “easiest” input of size \(N \)
- **Average-case complexity**: \(\text{avg} \) # steps algorithm takes on random inputs of size \(N \)
- **Amortized complexity**: \(\text{max} \) total # steps algorithm takes on \(M \) “most challenging” consecutive inputs of size \(N \), divided by \(M \) (i.e., divide the max total by \(M \)).
Bounds vs. Cases

Two **orthogonal** axes:

- **Bound Flavor**
 - Upper bound (O, o)
 - Lower bound (Ω, ω)
 - Asymptotically tight (θ)

- **Analysis Case**
 - Worst Case (Adversary), $T_{\text{worst}}(n)$
 - Average Case, $T_{\text{avg}}(n)$
 - Best Case, $T_{\text{best}}(n)$
 - Amortized, $T_{\text{amort}}(n)$

One can estimate the bounds for any given case.