Today’s Agenda

- Solving two pencil-on-paper puzzles
 - Euler Circuits
 - Hamiltonian circuits
- Hamiltonian circuits and NP complete problems
- The NP = P problem
 - Your chance to win a Turing award!
- Weiss Chapter 9.7

It’s Puzzle Time!

Which of these can you draw without lifting your pencil, drawing each line only once? Can you start and end at the same point?

Historical Puzzle: Seven Bridges of Konigsberg

Want to cross all bridges but… Can cross each bridge only once

Euler Circuits and Tours

- **Euler tour**: a path through a graph that visits each edge exactly once
- **Euler circuit**: an Euler tour that starts and ends at the same vertex
- Named after Leonhard Euler (1707-1783), who cracked this problem and founded graph theory in 1736
- Some observations for undirected graphs:
 - An Euler circuit exists if the graph is connected and each vertex has even degree (= # of edges on the vertex)
 - An Euler tour exists if the graph is connected and either all vertices have even degree or exactly two have odd degree
Euler Circuit Problem

- **Problem:** Given an undirected graph G, find an Euler circuit.
- How can we check if one exists in linear time?
- Given that an Euler circuit exists, how do we construct an Euler circuit for G?

Finding Euler Circuits

- Given a graph $G = (V,E)$, find an Euler circuit in G.
 - Can check if one exists in $O(|V|+|E|)$ time.
- Basic Euler Circuit Algorithm:
 1. Do an edge walk from a start vertex until you are back to the start vertex. You never get stuck because of the even degree property.
 2. The walk is removed leaving several components each with the even degree property. Recursively find Euler circuits for these.
 3. Splice all these circuits into an Euler circuit.
- Running time $= O(|V| + |E|)$

Euler Circuit Example

- Euler(A):
 - $A B G E D G C A$

- Euler(B):
 - $A B G E D G C A$

Euler Circuit Example

- Euler(A):
 - $A B G E D G C A$

- Euler(B):
 - $B D F E C B$
Euler Circuit Example

Data Structure?

Euler with a Twist: Hamiltonian Circuits

Finding Hamiltonian Circuits in Graphs

Analysis of our Exhaustive Search Algorithm

Analysis of our Exhaustive Search Algorithm

- Euler circuit: A cycle that goes through each edge exactly once
- Hamiltonian circuit: A cycle that goes through each vertex exactly once
- Does graph I have:
 - An Euler circuit?
 - A Hamiltonian circuit?
- Does graph II have:
 - An Euler circuit?
 - A Hamiltonian circuit?

- Problem: Find a Hamiltonian circuit in a graph G
 - Sub-problem: Does G contain a Hamiltonian circuit?
 - No known easy algorithm for checking this…
 - One solution: Search through all paths to find one that visits each vertex exactly once
 - Can use your favorite graph search algorithm (DFS!) to find various paths
 - This is an exhaustive search (“brute force”) algorithm
 - Worst case \(\rightarrow \) need to search all paths
 - How many paths??

- Worst case \(\rightarrow \) need to search all paths
 - How many paths?
- Can depict these paths as a search tree

- Let the average branching factor of each node in this tree be \(b \)
- \(|V|\) vertices, each with \(b \) branches
- Total number of paths \(= b \cdot b \cdot \ldots \cdot b \)
 \(= O(b^{|V|}) \)
- Worst case \(\rightarrow \) Exponential time!

\[\text{Search tree of paths from B} \]
Review: Polynomial versus Exponential Time

- Most of our algorithms so far have been $O(\log N)$, $O(N)$, $O(N \log N)$ or $O(N^2)$ running time for inputs of size N
 - These are all polynomial time algorithms
 - Their running time is $O(N^k)$ for some $k > 0$
- Exponential time B^N is asymptotically worse than any polynomial function N^k for any k

When is a problem easy?

- We’ve seen some “easy” graph problems:
 - Graph search
 - Shortest-path
 - Minimum Spanning Tree
- Not easy for us to come up with, but easy for the computer, once we know algorithm.

When is a problem hard?

- Almost everything we’ve seen in class has had a near linear time algorithm
- But of course, computers can’t solve every problem quickly.
- In fact, there are perfectly reasonable sounding problems that no computer could ever solve in any amount of time.

Shortest vs. Longest Path

- Finding the shortest path is easy—that is, we know an efficient algorithm. Namely DFS or BFS.
- How do we find the longest path?

Longest Path

- Again, no choice but to enumerate all paths.
- Q: Why doesn’t DFS work?
 - A node is visited only once, therefore only one path through each node is considered. But as we saw, there could be exponentially many paths. DFS is exploring only one per node.
Subset Sum

• We saw 4 number sum in homework:
• Given a list of N integers and target k, are there 4 numbers that sum to k?
• General Subset Sum: Given N integers and a target k, is there some subset of integers that sum to k?

Solving Subset Sum

• Only thing to do is try every possible combination.
• How many possible subsets are there of N integers?
• For the easier version, 4 numbers?

The Complexity Class P

• The set P is defined as the set of all problems that can be solved in \textit{polynomial worst case time}.
 › Also known as the \textit{polynomial time} complexity class.
 › All \textit{problems} that have some \textit{algorithm} whose running time is \(O(N^k)\) for some \(k\).
• Examples of problems in P: sorting, shortest path, Euler circuit, etc.

The Complexity Class NP

• \textit{Definition}: NP is the set of all problems for which a given candidate solution can be \textit{tested} in polynomial time.
• Example of a problem in NP:
 › Hamiltonian circuit problem: Why is it in NP?
 • Given a candidate path, can test in linear time if it is a Hamiltonian circuit – just check if all vertices are visited exactly once in the candidate path.

Why NP?

• NP stands for \textit{Nondeterministic Polynomial time}.
 › Why “nondeterministic”?
 • Corresponds to algorithms that can guess a solution (if it exists) → the solution is then verified to be correct in polynomial time.
 • Nondeterministic algorithms don’t exist – purely theoretical idea invented to understand how hard a problem could be.
• Examples of problems in NP:
 › Hamiltonian circuit: Given a candidate path, can test in linear time if it is a Hamiltonian circuit.
 › Satisfiability: Given a circuit made out of AND, OR, NOT gates: is there an input that makes it output “1”?
 › All problems that are in P (why?)
Your Chance to Win a Turing Award

- It is generally believed that $P \neq NP$, i.e., there are problems in NP that are not in P
- But no one has been able to show even one such problem!
- This is the fundamental open problem in theoretical computer science
- Nearly everyone has given up trying to prove it. Instead, theoreticians prove theorems about what follows once we assume $P \neq NP$!