CSE 326: Data Structures
Splay Trees
Neva Cherniavsky
Summer 2006

Announcements
- Midterm (July 17) during lecture
 › Topics posted by Monday
- Project 2c posted early next week

Self adjustment for better living
- Ordinary binary search trees have no balance conditions
 › what you get from insertion order is it
- Balanced trees like AVL trees enforce a balance condition when nodes change
 › tree is always balanced after an insert or delete
- Self-adjusting trees get reorganized over time as nodes are accessed

Splay Trees
- Blind adjusting version of AVL trees
 › Why worry about balances? Just rotate anyway!
- **Amortized** time per operations is $O(\log n)$
- Worst case time per operation is $O(n)$
 › But guaranteed to happen rarely

Insert/Find always rotate node to the root!

Recall: Amortized Complexity
If a sequence of M operations takes $O(M f(n))$ time, we say the amortized runtime is $O(f(n))$.
- Worst case time per operation can still be large, say $O(n)$
- Worst case time for any sequence of M operations is $O(M f(n))$

Average time per operation for any sequence is $O(f(n))$

Recall: Amortized Complexity
- Is amortized guarantee any weaker than worstcase?
- Is amortized guarantee any stronger than averagecase?
- Is average case guarantee good enough in practice?
- Is amortized guarantee good enough in practice?
The Splay Tree Idea

If you’re forced to make a really deep access:

Since you’re down there anyway, fix up a lot of deep nodes!

Find/Insert in Splay Trees

1. Find or insert a node k
2. Splay k to the root using:
 - zig-zag, zig-zig, or plain old zig rotation

Why could this be good??

1. Helps the new root, k
 - Great if k is accessed again
2. And helps many others!
 - Great if many others on the path are accessed

Splaying node k to the root:
Need to be careful!

One option (that we won’t use) is to repeatedly use AVL single rotation until k becomes the root: (see Section 4.5.1 for details)

Splaying node k to the root:
Need to be careful!

What’s bad about this process?

Splay Tree Terminology

- Let X be a non-root node with ≥ 2 ancestors.
 - P is its parent node.
 - G is its grandparent node.

Zig-Zig and Zig-Zag

Parent and grandparent in same direction.
Parent and grandparent in different directions.
Zig-Zag operation

• “Zig-Zag” consists of two rotations of the opposite direction (assume R is the node that was accessed)

ZigFromRight → ZigFromLeft → ZigZagFromLeft

Splay: Zig-Zag*

*Just like an…
Which nodes improve depth?

Zig-Zig operation

• “Zig-Zig” consists of two single rotations of the same direction (R is the node that was accessed)

Splay: Zig-Zig*

*Is this just two AVL single rotations in a row?
Why does this help?

Special Case for Root: Zig

Relative depth of p, Y, Z?
Relative depth of everyone else?

Why not drop zig-zig and just zig all the way?

Splaying Example: Find(6)

Find(6)
Still Splaying 6

Finally...

Another Splay: Find(4)

Example Splayed Out

Student Activity: Find 2

• Find 2
• On new tree, how long would it take now to access 6? What about 4?
• Will our tree ever look like what we started with?

Wait...

What happened here?

Didn’t two find operations take linear time instead of logarithmic?

What about the amortized $O(\log n)$ guarantee?
Why Splaying Helps

- If a node \(n \) on the access path is at depth \(d \) before the splay, it’s at about depth \(d/2 \) after the splay.

- Overall, nodes which are low on the access path tend to move closer to the root.

- Splaying gets amortized \(O(\log n) \) performance. (Maybe not now, but soon, and for the rest of the operations.)

Practical Benefit of Splaying

- No heights to maintain, no imbalance to check for.
 - Less storage per node, easier to code.

- Often data that is accessed once, is soon accessed again!
 - Splaying does implicit caching by bringing it to the root.

Splay Operations: Find

- Find the node in normal BST manner
- Splay the node to the root
 - if node not found, splay what would have been its parent.

What if we didn’t splay?

Splay Operations: Insert

- Insert the node in normal BST manner
- Splay the node to the root

What if we didn’t splay?

Example Insert

- Inserting in order 1,2,3,…,8
- Without self-adjustment

With Self-Adjustment

- Inserting in order 1,2,3,…,8
- With self-adjustment
With Self-Adjustment

Splay Operations: Remove

O(__) time!!

Splay Operations: Remove

Join

Join(L, R):
given two trees such that (stuff in L) < (stuff in R), merge them:

Splay on the maximum element in L, then attach R

Example Deletion

Example Deletion

Practice Delete

Practice Delete

Splay Tree Summary

• All operations are in amortized $O(\log n)$ time
• Splaying can be done top-down; this may be better because:
 › only one pass
 › no recursion or parent pointers necessary
 › we didn’t cover top-down in class
• Splay trees are very effective search trees
 › Relatively simple
 › No extra fields required
 › Excellent locality properties: frequently accessed keys are cheap to find