1. More buildHeap proof for those who are curious. Suppose we have a binary tree of size N, and suppose the tree is completely filled in. Then $N = 2^k - 1$, where the height of the tree is $k - 1$. (If you’re not sure about this, think about some small examples, e.g. $N = 7$). We established in class today that the summation for operations required in buildHeap is

$$\sum_{i=1}^{k-1} (k - i)2^{i-1}$$

This is because at the top level (i.e. $i = 1$) we could percolate down the entire tree, the height of which is $k-1$; but we’d only have to do that for one item. At the second level (i.e. $i = 2$) we could percolate down the entire tree again, but from the second level, the height of which is $k-2$. However, we might have to do the percolation for both items at the second level. And so on, so that at the ith level, we could percolate down the height of the tree $(k - i)$ and we may have to do that for the 2^{i-1} items at the ith level.

We solve the summation as follows:

$$S = \sum_{i=1}^{k-1} (k - i)2^{i-1} = (k - 1)(1) + (k - 2)(2) + (k - 3)(4) + \ldots + (2)(2^{k-3}) + (1)(2^{k-2})$$

Now let’s look at multiplying S by 2 and subtracting S from 2S.

$$2S = (k - 1)(2) + (k - 2)(4) + \ldots + (2)(2^{k-2}) + (1)(2^{k-1})$$

$$-S = -(k - 1)(1) - (k - 2)(2) - (k - 3)(4) - \ldots - (1)(2^{k-2})$$

$$2S - S = -(k - 1)(1) + 2 + 4 + \ldots + 2^{k-2} + (1)(2^{k-1})$$

$$S = -k + 1 + 2 + 4 + \ldots + 2^{k-2} + 2^{k-1}$$

So $S = -k + \sum_{i=0}^{k-1} 2^i$. From page 4 in Weiss, that sum is $2^{k+1}-1$, thus $S = 2^k - 1$. Since $N = 2^k - 1$, $k = \log_2(N-1)$, and $S = 2^{\log_2(N-1)} - \log_2(N-1) - 1 = N - 1 - \log_2(N-1) - 1 = O(N)$.

2. More on d-heap deleteMin for those who are curious. The question is, how does the running time of deleteMin on a d-heap ($d \log_d n$) compare to the running time of deleteMin on a binary heap ($2 \log_2 n$)? First we change the base, so the comparison is clearer.

$$d \log_d n = \frac{d \log_2 n}{\log_2 d} = \frac{d}{\log_2 d} \log_2 n$$
So we want to know how $d/\log_2 d$ compares with 2. If we set $d = 3$, we get $3/\log_2 3 = 3/1.54 < 2$. If we set $d = 4$, we get $4/\log_2 4 = 4/2 = 2$. As d increases, we see that $d/\log_2 d$ increases (since d grows faster than $\log_2 d$). Thus the answer is “it depends on d”; but a more detailed answer is “for values of $d > 4$, $d \log_d n > 2 \log_2 n$”. So for $d > 4$, deleteMin runs slower on a d-heap than on a binary heap.