CSE 326: Data Structures
Priority Queues and Binary Heaps
Neva Cherniavsky
Summer 2006

Administration
- Due tonight: Project 1
- Released today: Project 2, phase A
- Due Wednesday: Homework 1
- Released Wednesday: Homework 2
- Gary has office hours tomorrow

A New Problem…
- Application: Find the smallest (or highest priority) item quickly
- Operating system needs to schedule jobs according to priority
- Doctors in ER take patients according to severity of injuries

Priority Queue ADT
- Security line at the airport ???
- Printer queues ???
- operations: insert, deleteMin

Priority Queue ADT
1. PQueue data: collection of data with priority
2. PQueue operations
 - insert
 - deleteMin
 (also: create, destroy, is_empty)
3. PQueue property: for two elements in the queue, x and y, if x has a lower priority value than y, x will be deleted before y

Applications of the Priority Q
- Select print jobs in order of decreasing length
- Forward packets on network routers in order of urgency
- Select most frequent symbols for compression
- Sort numbers, picking minimum first
- Anything greedy
Implementations of P Queue ADT

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>deleteMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted list (Array)</td>
<td>O(1)</td>
<td>O(N)</td>
</tr>
<tr>
<td>Unsorted list (Linked-List)</td>
<td>O(1)</td>
<td>O(N)</td>
</tr>
<tr>
<td>Sorted list (Array)</td>
<td>O(N)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Sorted list (Linked-List)</td>
<td>O(N)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Binary Search Tree (BST)</td>
<td>Don’t worry</td>
<td></td>
</tr>
<tr>
<td>Binary heap</td>
<td>O(log N)</td>
<td>O(log N)</td>
</tr>
</tbody>
</table>

Tree Review

root(T):
leaves(T):
children(B):
parent(H):
siblings(E):
ancestors(F):
descendants(G):
subtree(C):

More Tree Terminology

depth(T):
height(G):
degree(B):
branching factor(T):

Some More Tree Terminology

T is binary if …
T is n-ary if …
T is complete if …

How deep is a complete tree with n nodes?

Binary Heap Properties

1. Structure Property
2. Ordering Property

Heap Structure Property

- A binary heap is a complete binary tree.

Complete binary tree – binary tree that is completely filled, with the possible exception of the bottom level, which is filled left to right.

Examples:
Representing Complete Binary Trees in an Array

From node i:
- left child:
- right child:
- parent:

implicit (array) implementation:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Why better than tree with pointers?

Heap Order Property

Heap order property: For every non-root node X, the value in the parent of X is less than (or equal to) the value in X.

not a heap

Heap order property

• A heap provides limited ordering information
• Each path is sorted, but the subtrees are not sorted relative to each other
 - A binary heap is NOT a binary search tree

These are all valid binary heaps (minimum)

Heap Operations

- FindMin: Easy!
 - Return root value $A[1]$
 - Run time = ?
- DeleteMin:
 - Delete (and return) value at root node
- Insert(val):
 - Insert value into heap

DeleteMin

• Delete (and return) value at root node
Maintain the Structure Property

- We now have a “Hole” at the root
 - Need to fill the hole with another value
- When we get done, the tree will have one less node and must still be complete

Maintain the Heap Property

- The last value has lost its node
 - we need to find a new place for it
- We can do a simple insertion sort operation to find the correct place for it in the tree

DeleteMin: Percolate Down

- Copy smaller child up and go down one level
- Done if both children are ≥ item or reached a leaf node
- What is the run time?

DeleteMin: Run Time Analysis

- Run time is $O(\text{depth of heap})$
- A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 - height = $\lceil \log_2(N) \rceil - 1$
- Run time of DeleteMin is $O(\log N)$

Insert

- Add a value to the tree
- Structure and heap order properties must still be correct when we are done

Maintain the Structure Property

- The only valid place for a new node in a complete tree is at the end of the array
- We need to decide on the correct value for the new node, and adjust the heap accordingly
Maintain the Heap Property

- The new value goes where?
- We can do a simple insertion sort operation to find the correct place for it in the tree.

Insert: Percolate Up

- Start at last node and keep comparing with parent \(A[i/2]\)
- If parent larger, copy parent down and go up one level
- Done if parent ≤ item or reached top node \(A[1]\)
- Run time?

Insert: Done

- Run time?

Other Priority Queue Operations

- decreaseKey
 - given a pointer to an object in the queue, reduce its priority value
 Solution: change priority and_____________________________
- increaseKey
 - given a pointer to an object in the queue, increase its priority value
 Solution: change priority and_____________________________

Other Heap Operations

decreaseKey(objPtr, amount): raise the priority of an object, percolate up
increaseKey(objPtr, amount): lower the priority of an object, percolate down
remove(objPtr): remove an object, move to top, them delete.
 1) decreaseKey(objPtr, =)
 2) deleteMin()

Worst case Running time for all of these:
FindMax?
ExpandHeap – when heap fills, copy into new space.
Build Heap

```
BuildHeap {
    for i = N/2 to 1 by -1 PercDown(i, A[i])
}
```

Analysis of Build Heap

- Assume N = 2^k −1
 - Level 1: k -1 steps for 1 item
 - Level 2: k - 2 steps of 2 items
 - Level 3: k - 3 steps for 4 items
 - Level i: k - i steps for 2^(i-1) items

Total Steps = \(\sum_{i=1}^{k} (k-i)2^{i-1} = 2^k - k - 1 \)
= \(O(N) \)

Binary Min Heaps (summary)

- **insert**: percolate up. \(O(\log N) \) time.
- **deleteMin**: percolate down. \(O(\log N) \) time.
- **Next time**: Even more priority queues??