Equivalence Relations

• A relation R is defined on set S if for every pair of elements $a, b \in S$, $a R b$ is either true or false.
• An equivalence relation is a relation R that satisfies the 3 properties:
 › Reflexive: $a R a$ for all $a \in S$
 › Symmetric: $a R b$ if $b R a$; for all $a, b \in S$
 › Transitive: $a R b$ and $b R c$ implies $a R c$

Equivalence Classes

• Given an equivalence relation R, decide whether a pair of elements $a, b \in S$ is such that $a R b$.
• The equivalence class of an element a is the subset of S of all elements related to a.
• Equivalence classes are disjoint sets

Dynamic Equivalence Problem

• Starting with each element in a singleton set, and an equivalence relation, build the equivalence classes
• Requires two operations:
 › Find the equivalence class (set) of a given element
 › Union of two sets
• It is a dynamic (on-line) problem because the sets change during the operations and Find must be able to cope!
Disjoint Union - Find

- Maintain a set of disjoint sets.
 - \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
- Each set has a unique name, one of its members
 - \{3, 5, 7\}, \{4, 2, 8\}, \{9\}, \{1, 6\}

Union

- Union(x,y) – take the union of two sets named x and y
 - \{3, 5, 7\}, \{4, 2, 8\}, \{9\}, \{1, 6\}
 - Union(5,1)
 - \{3, 5, 7, 1, 6\}, \{4, 2, 8\}, \{9\},

Find

- Find(x) – return the name of the set containing x.
 - \{3,5,7,1,6\}, {4,2,8}, {9},
 - Find(1) = 5
 - Find(4) = 8

An Application

- Build a random maze by erasing edges.
An Application (ct’d)

- Pick Start and End

- Repeatedly pick random edges to delete.

Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles – no cell can reach itself by a path unless it retraces some part of the path.

A Cycle (we don’t want that)
A Good Solution

Good Solution : A Hidden Tree

Number the Cells

We have disjoint sets $S = \{ \{1\}, \{2\}, \{3\}, \{4\}, \ldots, \{36\} \}$ each cell is unto itself.
We have all possible edges $E = \{ (1,2), (1,7), (2,8), (2,3), \ldots \}$ 60 edges total.

Basic Algorithm

- $S =$ set of sets of connected cells
- $E =$ set of edges

While there is more than one set in S
- pick a random edge (x,y)
- $u := \text{Find}(x)$; $v := \text{Find}(y)$;
- if $u \neq v$ then
 - $\text{Union}(u,v)$ //knock down the wall between the cells (cells in
 - Remove (x,y) from E //the same set are connected)
- If $u=v$ there is already a path between x and y
- All remaining members of E form the maze
Example Step

Pick (8,14)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>End</td>
</tr>
</tbody>
</table>

S

- \{1,2,7,8,9,13,19\}
- \{3\}
- \{4\}
- \{5\}
- \{6\}
- \{10\}
- \{11,17\}
- \{12\}
- \{14,20,26,27\}
- \{15,16,21\}
- \{22,23,24,29,30,32\}
- \{33,34,35,36\}

Find (8) = 7

Find (14) = 20

Union (7,20)

Example at the End

Pick (19,20)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>End</td>
</tr>
</tbody>
</table>

S

- \{1,2,7,8,9,13,19,14,20,26,27\}
- \{3\}
- \{4\}
- \{5\}
- \{6\}
- \{10\}
- \{11,17\}
- \{12\}
- \{15,16,21\}
- \{22,23,24,29,30,32\}
- \{33,34,35,36\}

S

- \{1,2,3,4,5,6,7,...,36\}

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>End</td>
</tr>
</tbody>
</table>
Up-Tree for DU/F

Initial state: 1 2 3 4 5 6 7

Intermediate state:

Roots are the names of each set.

Find Operation

- Find(x) follow x to the root and return the root

Find(6) = 7

Union Operation

- Union(i,j) - assuming i and j roots, point i to j.

Simple Implementation

- Array of indices (Up[i] is parent of i)

Up [x] = 0 means x is a root.
Union

Union

\[
\text{Union}(\text{up}[], \ x, y : \text{integer}) : \{
\text{//precondition: x and y are roots//}
\text{Up}[x] := y
\}
\]

Constant Time!

Find

Find

- **Design Find operator**
 - Recursive version
 - Iterative version

\[
\text{Find}(\text{up}[], \ x : \text{integer}) : \text{integer} \{
\text{//precondition: x is in the range 1 to size//}
\}
\]

A Bad Case

A Bad Case

A bad case of union operations: Union(1,2), Union(2,3), ..., Union(n-1,n)

Find(1) → n steps!!

Weighted Union

Weighted Union

- **Weighted Union (weight = number of nodes)**
 - Always point the smaller tree to the root of the larger tree

W-Union(1,7)
Example Again

Union(1,2)
Union(2,3)
Union(n-1,n)
Find(1) constant time

Analysis of Weighted Union

• With weighted union an up-tree of height h has weight at least 2^h.
• Proof by induction
 › Basis: $h = 0$. The up-tree has one node, $2^0 = 1$
 › Inductive step: Assume true for all $h' < h$.

Let T be an up-tree of weight n formed by weighted union. Let h be its height.
• $n \geq 2^h$
• $\log_2 n \geq h$
• Find(x) in tree T takes $O(\log n)$ time.
• Can we do better?
Example of Worst Cast (cont’)

After \(n - 1 = n/2 + n/4 + \ldots + 1 \) Weighted Unions

If there are \(n = 2^k \) nodes then the longest path from leaf to root has length \(k \).

Weighted Union

\[
\text{W-Union}(i, j : \text{index}) \{
 \text{// } i \text{ and } j \text{ are roots/}
 \text{wi} := \text{weight}[i];
 \text{wj} := \text{weight}[j];
 \text{if } \text{wi} < \text{wj} \text{ then}
 \text{up}[i] := j;
 \text{weight}[j] := \text{wi} + \text{wj};
 \text{else}
 \text{up}[j] := i;
 \text{weight}[i] := \text{wi} + \text{wj};
\}
\]

Elegant Array Implementation

Path Compression

• On a Find operation point all the nodes on the search path directly to the root.
Self-Adjustment Works

Path Compression Find

```c
PC-Find(i : index) {
    r := i;
    while up[r] ≠ 0 do //find root/
        r := up[r];
    if i ≠ r then //compress path/
        k := up[i];
        while k ≠ r do
            up[i] := r;
            i := k;
            k := up[k]
        return(r)
}
```

Example

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is O(1) and for a PC-Find is O(log n).
- Time complexity for m ≥ n operations on n elements is O(m log* n) where log* n is a very slow growing function.
 - log* n < 7 for all reasonable n. Essentially constant time per operation!
Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 › average time per operation is essentially a constant.
 › worst case time for a PC-Find is $O(\log n)$.
- An individual operation can be costly, but over time the average cost per operation is not.

Find Solutions

Recursive
Find(up[] : integer array, x : integer) : integer {
 //precondition: x is in the range 1 to size/
 if up[x] = 0 then return x
 else return Find(up,up[x]);
}

Iterative
Find(up[] : integer array, x : integer) : integer {
 //precondition: x is in the range 1 to size/
 while up[x] ≠ 0 do
 x := up[x];
 return x;
}