Trees

CSE 326
Data Structures
Unit 4

Reading: Chapter 4.1-4.3

Why Do We Need Trees?

• Lists, Stacks, and Queues are linear relationships
• Information often contains hierarchical relationships
 › File directories or folders
 › Moves in a game
 › Hierarchies in organizations

Tree Jargon

• root
• nodes and edges
• leaves
• parent, children, siblings
• ancestors, descendants
• subtrees
• path, path length
• height, depth

More Tree Jargon

• Length of a path = number of edges
• Depth of a node N = length of path from root to N
• Height of node N = length of longest path from N to a leaf
• Depth of tree = depth of deepest node
• Height of tree = height of root
Definition and Tree Trivia

• A tree is a set of nodes, i.e., either
 › it’s an empty set of nodes, or
 › it has one node called the root from which zero or
 more trees (subtrees) descend
• Two nodes in a tree have at most one path
 between them
• Can a non-zero path from node N reach node
 N again?
 No. Trees can never have cycles (loops)

Paths

• A tree with N nodes always has N-1
 edges (prove it by induction)

 Base Case: N=1

 Inductive Hypothesis: Suppose that a tree with
 N=k nodes always has k-1 edges.

 Induction: Suppose N=k+1…

Implementation of Trees

• One possible pointer-based Implementation
 › tree nodes with value and a pointer to each child
 › but how many pointers should we allocate space for?
• A more flexible pointer-based implementation
 › 1st Child / Next Sibling List Representation
 › Each node has 2 pointers: one to its first child and one to
 next sibling
 › Can handle arbitrary number of children

Arbitrary Branching
Binary Trees

- Every node has at most two children
 - Most popular tree in computer science
- Given N nodes, what is the minimum depth of a binary tree?

Minimum depth vs node count

- At depth d, you can have \(N = 2^d \) to \(2^{d+1}-1 \) nodes
- minimum depth \(d \) is \(\Theta(\log N) \)

Maximum depth vs node count

- What is the maximum depth of a binary tree?
 - Degenerate case: Tree is a linked list!
 - Maximum depth = \(N-1 \)
- Goal: Would like to keep depth at around \(\log N \) to get better performance than linked list for operations like Find
A degenerate tree

A linked list (each node has one children).

Traversing Binary Trees

- The definitions of the traversals are recursive definitions. For example:
 - Visit the root
 - Visit the left subtree (i.e., visit the tree whose root is the left child) and do this recursively
 - Visit the right subtree (i.e., visit the tree whose root is the right child) and do this recursively
- Traversal definitions can be extended to general (non-binary) trees

Traversing Binary Trees

- Preorder: Node, then Children (starting with the left) recursively + * + A B C D
- Inorder: Left child recursively, Node, Right child recursively A + B * C + D
- Postorder: Children recursively, then Node A B + C * D +

Binary Search Trees

- Binary search trees are binary trees in which
 - all values in the node’s left subtree are less than node value
 - all values in the node’s right subtree are greater than node value
- Operations:
 - Find, FindMin, FindMax, Insert, Delete

What happens when we traverse the tree in inorder?
Operations on Binary Search Trees

- How would you implement these?
 - Recursive definition of binary search trees allows recursive routines
 - Call by reference helps too
- FindMin
- FindMax
- Find
- Insert
- Delete

Find

Find(T : tree pointer, x : element): tree pointer {
 case {
 T = null : return null;
 T.data = x : return T;
 T.data > x : return Find(T.left, x);
 T.data < x : return Find(T.right, x)
 }
}

FindMin

- Design recursive FindMin operation that returns the smallest element in a binary search tree.
 > FindMin(T : tree pointer) : tree pointer {
 // precondition: T is not null //
 ???
 }
Insert Operation

- **Insert(T: tree, X: element)**
 - Do a “Find” operation for X
 - If X is found update (no need to insert)
 - Else, “Find” stops at a NULL pointer
 - Insert Node with X there
- Example: Insert 95

```
Insert(T : reference tree pointer, x : element) : integer {
  if T = null then
    T := new tree; T.data := x; return 1; //the links to children are null
  case
    T.data = x : return 0;
    T.data > x : return Insert(T.left, x);
    T.data < x : return Insert(T.right, x);
  endcase
}  
```

This is where call by reference makes a difference.

Advantage of reference parameter is that the call has the original pointer not a copy.

Delete Operation

- Delete is a bit trickier...Why?
- Suppose you want to delete 10
- Strategy:
 - Find 10
 - Delete the node containing 10
- Problem: When you delete a node, what do you replace it by?
Delete Operation

- Problem: When you delete a node, what do you replace it by?
- Solution:
 › If it has no children, by NULL
 › If it has 1 child, by that child
 › If it has 2 children, by the node with the smallest value in its right subtree (the successor of the node)

Delete “5” - No children

Find 5 node
Then Free the 5 node and NULL the pointer to it

Delete “24” - One child

Find 24 node
Then Free the 24 node and replace the pointer to it with a pointer to its child

Delete “10” - Two children

Find 10, Copy the smallest value in right subtree into the node
Then (recursively) Delete node with smallest value in right subtree
Note: it cannot have two children (why?)
Then Delete “11” - One child

Then Free the 11 node and replace the pointer to it with a pointer to its child

FindMin Solution

```cpp
FindMin(T : tree pointer) : tree pointer {
    // precondition: T is not null
    if T.left = null return T
    else return FindMin(T.left)
}
```