DFS, BFS, Shortest Path Problems

CSE 326
Data Structures
Unit 12

Reading: Sections 9.3, 9.6, 10.3.4

Applied Algorithm Scenario

Real world problem

Abstractly model the problem

Find abstract algorithm

Adapt to original problem

Broadcasting in a Network

• Network of Routers
 - Organize the routers to efficiently broadcast messages to each other.

Incoming message

• Duplicate and send to some neighbors.
• Eventually all routers get the message

Goal: Minimize the number of messages.

Spanning Tree in a Graph

Vertex = router
Edge = link between routers
Spanning tree
- Connects all the vertices
- No cycles
Spanning Tree Problem

- **Input**: An undirected graph \(G = (V,E) \). \(G \) is connected.
- **Output**: \(T \) contained in \(E \) such that
 - \((V,T) \) is a connected graph
 - \((V,T) \) has no cycles

Depth First Search Algorithm

- Recursive marking algorithm
- Initially every vertex is unmarked

\[
\text{DFS}(i: \text{vertex}) \\
\quad \text{mark } i; \\
\quad \text{for each } j \text{ adjacent to } i \text{ do} \\
\qquad \text{if } j \text{ is unmarked then DFS}(j) \\
\quad \text{end\{DFS\}}
\]

Example of Depth First Search

\[\text{DFS}(1)\]

Example Step 2

\[\text{DFS}(1) \text{ DFS}(2)\]
Example Step 7

Note that the edges traversed in the depth first search form a spanning tree.

Spanning Tree Algorithm

Main
T := empty set;
ST(1);
end{Main}

ST(i: vertex)
mark i;
for each j adjacent to i do
if j is unmarked then
 Add {i,j} to T;
ST(j);
end{ST}

The addition to DFS

Applied Algorithm Scenario

Real world problem

Wrong problem

Wrong model

Abstractly model the problem

Incorrect algorithm poor performance

Find abstract algorithm

Correct

Evaluate

Adapt to original problem

Evaluation Step Expanded

Algorithm Correct?

yes

Choose Data Structure

Performance?

unsatisfactory

satisfactory

Implement

- New algorithm
- New model
- New problem

- New data structure
- New algorithm
- New model
Correctness of ST Algorithm

- There are no cycles in T
 - This is an invariant of the algorithm.
 - Each edge added to T goes from a vertex in T to a vertex not in T.
- If G is connected then eventually every vertex is marked.

Data Structure Step

Choose Data Structure

- Algorithm Correct?
 - no - New algorithm
 - yes - New model

Performance?

- unsatisfactory - New data structure
- satisfactory - New algorithm

Implement

Correctness (cont.)

- If G is connected then so is (V,T)

Data Structure Choice

- Adjacency lists
 - Good for sparse graphs
 - Supports depth first search
- Adjacency matrix
 - Good for dense graphs
 - Supports depth first search
Spanning Tree with Adjacency Lists

Main
G is array of adjacency lists;
M[i] := 0 for all i;
T is empty;
Spanning_Tree(1);
end{Main}

ST(i: vertex)
M[i] := 1;
v := G[i];
while (v ≠ null)
j := v.vertex;
if (M[j] = 0) then
add {i,j} to T;
ST(j);
v := v.next;
end{ST}

M is the marking array (entry for each vertex).

Node of linked list:
vertex next

Performance Step

Algorithm Correct?

yes

no
- New algorithm
- New model
- New problem

Choose Data Structure

Performance?
satisfactory

unsatisfactory
- New data structure
- New algorithm
- New model

Implement

Performance of ST Algorithm

- n vertices and m edges
- Connected graph (m ≥ n-1)
- Space complexity O(m)
- Time complexity O(m) - for each edge we perform O(1) operations in each of the two endpoints.

Other Uses of Depth First Search

- Popularized by Hopcroft and Tarjan 1973
- Connected components
- Strongly connected components in directed graphs
- Topological sorting of a acyclic directed graphs
- Maze solving
ST using Breadth First Search 1

- Uses a queue to order search

Queue = 1

Queue = 2,6,5

Queue = 6,5,7,3

Queue = 5,7,3
Spanning Tree using Breadth First Search (BFS)

Initialize T to be empty; Initialize Q to be empty; Enqueue(1,Q) and mark 1; while (Q is not empty) do i := Dequeue(Q); for each j adjacent to i do if j is not marked then add {i,j} to T; mark j; Enqueue(j,Q);

Depth First vs Breadth First

• Depth First
 - Stack or recursion
 - Many applications
• Breadth First
 - Queue (recursion no help)
 - Can be used to find shortest paths from the start vertex
• Both are $O(|E|)$

Shortest-path Algorithms

• Scenario: One router creates messages (source). Each message needs to reach other routers (one or more) along the shortest possible path.
• Abstraction: given a vertex s, find the shortest path from s to any other vertex of G.
• Other shortest path problems:
 - Different edges have different lengths (delay, cost, etc.)
 - All-pair shortest path problem: no specific source.

Using BFS for Shortest-path

• Given a vertex s, find the shortest path from s to any other vertex of G.

A 'centralized' version of BFS:
1. Label vertex s with 0.
2. $i \leftarrow 0$
3. Find all unlabeled vertices adjacent to at least one vertex labeled i. If none are found, stop.
4. Label all the vertices found in (3) with $i + 1$.
5. $i \leftarrow i + 1$ and go to (3).
BFS for Shortest Path (i=0)

Vertices whose distance from s is 0 are labeled.

BFS for Shortest Path (i=1)

Vertices whose distance from s is 1 are labeled.

BFS for Shortest Path (i=2)

Vertices whose distance from s is 2 are labeled.

BFS for Shortest Path (i=3)

Vertices whose distance from s is 3 are labeled.
In the next iteration we find out that the whole graph is labeled and we stop.
The BFS Tree

Theorem: Each vertex is labeled by its length from \(s \).

Proof: By induction on the label.

For any \(v \neq s \), let \(p(v) \) be the vertex that 'discovered' \(v \) in BFS.

Then \(T=\{(p(v),v)\} \) is a directed spanning tree rooted in \(s \), and for each vertex \(v \), the path from \(s \) to \(v \) in \(T \) is a shortest path from \(s \) to \(v \) in \(G \).

Note: the 'centralized' version is for simplification only. When implemented, we need the queue as before.

Single-Source Shortest Paths (Dijkstra's algorithm)

- Using BFS, we solve the problem of finding shortest path from \(s \) to any vertex \(v \).
- What if edges have associated costs or distances? (BFS assumes edge costs are all 1.)
- Assume each edge \((u,v)\) has non-negative weight \(c(u,v) \).
- A weight of a path = total weights of all edges on path.
- **Problem:** Find, for each vertex \(v \), a shortest (minimum weight) path from \(s \) to \(v \).

Idea of Dijkstra's Algorithm:

- **Maintain:**
 - \(\lambda[0..n-1] \) where \(\lambda(v) \) is the cost of best path from \(s \) to \(v \) found so far, and
 - \(T \), set of vertices \(v \) for which \(\lambda(v) \) is not yet known to be optimal.

- **Initially:**
 - \(\lambda(s) = 0; \lambda(v) = \infty \) for all \(v \) other than \(s \).
 - \(T = V \).

- **In each step:**
 - remove that \(v \) in \(T \) with minimum \(\lambda(v) \)
 - update those \(w \) in \(T \) s.t. \((v,w)\) in \(E \) and \(\lambda(w) > \lambda(v) + c(v,w) \).

Dijkstra's Algorithm

Assumption: \(c(u,v) = \infty \) if \((u,v)\) not in \(E \).

1. \(\lambda(s) \leftarrow 0 \) and for all \(v \neq s \), \(\lambda(v) \leftarrow \infty \).
2. \(T \leftarrow V \).
3. Let \(u \) be a vertex in \(T \) for which \(\lambda(u) \) is minimum.
4. For every edge, if \(v \in T \) and \(\lambda(v) > \lambda(u) + c(u,v) \) then \(\lambda(v) \leftarrow \lambda(u) + c(u,v) \).
5. \(T = T - \{u\} \), if \(T \) is not empty go to step 3.
Dijkstra's Algorithm - Example

Why is this Algorithm Correct?

- **Theorem**: At the termination of the algorithm, \(\lambda(v) \) is the length of the shortest path from \(s \) to \(v \) for each vertex \(v \) of \(G \).
- **Proof**: by induction on \(|V-T| \).
- **Inductive hypothesis**: Let \(|V-T|=k \).
 - \(\forall v \in V-T, \lambda(v) \) is the length of the shortest path from \(s \) to \(v \).
 - The vertices in \(V-T \) are the \(k \) closest vertices to \(s \).
 - \(\forall v \in T, \lambda(v) \) is the length of the shortest path from \(s \) to \(v \) that only goes through vertices in \(V-T \).

In class exercise: complete the execution.
* non-\(T \) vertices.
The λ values of vertices in V-T are correct and for each such v, the shortest path from s to v only goes through vertices in V-T

- **Induction Step:** Suppose true for first k steps.
The SP to the \((k+1)^{st}\) closest vertex, say \(w\), can go through only vertices in V-T, otherwise, there would be a closer vertex. Therefore, when selecting the min, we select the \((k+1)^{st}\) closest vertex to \(s\).
Say \(w\) is added.
New λ value for a vertex \(x\) is min of old λ value and \(\lambda(w) + c(w,x)\)

Dijkstra’s Algorithm - Run Time Analysis

Implementation 1:
- Adjacency lists.
- An array for the λ values.

Complexity:
In each iteration:
1. Finding a vertex \(u\) in \(T\) with minimal \(\lambda\)
 In the whole execution: \(n+(n-1)+(n-2)+...+1 = O(n^2)\)
2. Updating the λ-values of \(u\)'s neighbors:
 In each iteration we check \(\text{degree}(u)\) values.
 The total sum of the degrees in \(2m\) \(O(m)\)
 All together: \(O(m+n^2)= O(n^2)\) (remember, \(m\leq n(n-1)\))

Dijkstra’s Algorithm - Run Time Analysis

- **Implementation 2:** data structure: priority queue
- Stores set \(S\) (in our case, this is \(T\)) such that there is a linear order on key values (in our case the key is the λ value).
- Supports operations:
 - Insert(\(x\)) - insert element with key value \(x\) into set.
 - FindMin() - return value of smallest element in set.
 - DeleteMin() - delete smallest element in set.
 - Find(\(x\))

Priority-Queue Implementations

- Priority-Queue can be implemented such that each of these operations takes \(O(\log n)\) time for sets of size \(n\).

Running time of Dijkstra’s algorithm:
We need to consider insertions, delete Mins, finds, modifying λ values.
Running Time of Dijkstra’s Algorithm:

- \(n \) insertions: \(O(n \log n) \) time
- \(n \) deleteMins: \(O(n \log n) \) time
- \(m \) finds: \(O(m \log n) \) time
- \(m \) \(\lambda \)-value modifications: \(O(m \log n) \) time

- Running time: \(O((n + m) \log n) \)
- The \(O(n^2) \) is better for dense graphs

Single-Source Shortest Paths (Bellman-Ford’s algorithm)

- each edge \((u,v)\) has a weight \(c(u,v)\).
- \(c(u,v)\) might be negative, but there are no negative cycles.

1. \(\lambda(s) \leftarrow 0 \) and for every \(v \neq s \), \(\lambda(v) \leftarrow \infty \).
2. As long as there is an edge such that \(\lambda(v) > \lambda(u) + c(e) \), replace \(\lambda(v) \) by \(\lambda(u) + c(e) \).

For our purposes \(\infty \) is not greater than \(\infty + k \), even if \(k \) is negative.

Bellman-Ford algorithm

- How do we implement this algorithm?
- Order the edges: \(e_1, e_2, ..., e_{|E|} \).
- Perform step 2 by first checking \(e_1 \), then \(e_2 \), etc., after the first such sweep, go through additional sweeps, until an entire sweep produces no improvement.

- Running Example:

BF algorithm - correctness and run time analysis

- Theorem: if a shortest path from \(s \) to \(v \) consists of \(k \) edges, then by the end of the \(k^{th} \) sweep \(v \) will have its final label.
- Proof: induction on \(k \) (not here).
- Since \(k \) is bounded by \(|V|\) (remember, no negative cycles), step 2 is performed at most \(|E| - |V|\) times.
- Each comparison in step 2 can takes \(O(1) \) if the graph is kept in an Adjacency Matrix (with the weights) and an array with the \(\lambda(v) \) values.

The time complexity of BF is \(O(|E| \cdot |V|) \).
All-pair Shortest Path

- **Input:** a directed graph $G=(V,E)$ with $V=\{1, 2, ..., n\}$. The length of edge e is denoted by $c(e)$, and it may be negative.
- **Output:** All-pair shortest path: for any two vertices v,u in V, what is the shortest path from v to u
 - we will only be interested in the length of that path.

Floyd Algorithm (1962)

1. Init $\delta^0(i,j)$ as defined earlier
2. $k \leftarrow 1$
3. For every $1 \leq i,j \leq n$ compute $\delta^k(i,j) \leftarrow \min \{ \delta^{k-1}(i,j), \delta^{k-1}(i,k) + \delta^{k-1}(k,j) \}$.
4. If $k = n$, stop. If not, increment k and go to step 3.
Floyd Algorithm

\[\delta^k(i, j) \leftarrow \text{Min} \{ \delta^{k-1}(i, j), \delta^{k-1}(i, k) + \delta^{k-1}(k, j) \}. \]

The shortest path from \(i \) to \(j \) which may pass through vertices \(1, 2, \ldots, k \) but do not pass through vertices \(k+1, k+2, \ldots, n \):

1. Might not pass through vertex \(k \), or
2. Might pass through \(k \), and then it is composed by two already-computed shortest paths.

Floyd Algorithm

The value of \(\delta^n(i, j) \) is meaningful only if there are no negative cycles in \(G \).

The existence of negative cycles is detected by having \(\delta^k(i, i) < 0 \) for some \(i \) and \(k \).

Each application of step 3 requires \(n^2 \) operations, and step 3 is repeated \(n \) times. Thus, the algorithm is of complexity \(O(n^3) \).

Floyd Algorithm

\[\delta^k(i, j) \leftarrow \text{Min} \{ \delta^{k-1}(i, j), \delta^{k-1}(i, k) + \delta^{k-1}(k, j) \}. \]

Theorem: The value of \(\delta^n(i, j) \) is the shortest path from \(i \) to \(j \).

Proof idea: By induction on \(k \), the value of \(\delta^k(i, j) \) is correct. In particular, for \(\delta^n(i, j) \) we get the shortest path.

Shortest-path algorithms - Summary

- Single source, no weights:

 BFS - \(O(m) \)

- Single source, non-negative weights:

 Dijkstra \(O((n + m) \log n) \) or \(O(n^2) \)

- Single source, arbitrary weights:

 Bellman-Ford: \(O(nm) \)

- All-pair shortest path, arbitrary weights:

 Floyd: \(O(n^3) \)