What are graphs?

- Yes, this is a graph….

But we are interested in a different kind of “graph”

Graphs

- Graphs are composed of
 - Nodes (vertices)
 - Edges (arcs)

Varieties

- Nodes
 - Labeled or unlabeled
- Edges
 - Directed or undirected
 - Labeled or unlabeled
Motivation for Graphs

- Consider the data structures we have looked at so far...

- **Linked list**: nodes with 1 incoming edge + 1 outgoing edge

- **Binary trees/heaps**: nodes with 1 incoming edge + 2 outgoing edges

- **B-trees**: nodes with 1 incoming edge + multiple outgoing edges

CSE Course Prerequisites at UW

Nodes = courses
Directed edge = prerequisite

Representing a Maze

Nodes = junctions
Edge = door or passage
Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Precedence

\[
\begin{align*}
S_1 & \quad a = 0; \\
S_2 & \quad b = 1; \\
S_3 & \quad c = a + 1 \\
S_4 & \quad d = b + a; \\
S_5 & \quad e = d + 1; \\
S_6 & \quad e = c + d;
\end{align*}
\]

Which statements must execute before \(S_6 \)?
\(S_1, S_2, S_3, S_4 \)

Nodes = statements
Edges = precedence requirements

Information Transmission in a Computer Network

Nodes = computers
Edges = transmission rates

Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on connecting highway
Graph Definition

- A graph is simply a collection of nodes plus edges
 - Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = “vertex”)
- Formal Definition: A graph G is a pair (V, E) where
 - V is a set of vertices or nodes
 - E is a set of edges that connect vertices

Graph Example

- Here is a directed graph $G = (V, E)$
 - Each edge is a pair (v_1, v_2), where v_1, v_2 are vertices in V
 - $V = \{A, B, C, D, E, F\}$
 - $E = \{(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)\}$

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if $\{u,v\}$ is an edge in G
 - edge $e = \{u,v\}$ is incident with vertex u and vertex v
- The degree of a vertex in an undirected graph is the number of edges incident with it
 - a self-loop counts twice (both ends count)
 - denoted with $\deg(v)$
Undirected Terminology

- (A,B) is incident to A and to B
- B is adjacent to C and C is adjacent to B

Directed Terminology

- Vertex u is **adjacent to** vertex v in a directed graph G if (u,v) is an edge in G
 - vertex u is the initial vertex of (u,v)
- Vertex v is **adjacent from** vertex u
 - vertex v is the terminal (or end) vertex of (u,v)
- **Degree**
 - **in-degree** is the number of edges with the vertex as the terminal vertex
 - **out-degree** is the number of edges with the vertex as the initial vertex

Directed Terminology

- B adjacent to C and C adjacent from B

Handshaking Theorem

- Let $G=(V,E)$ be an undirected graph with $|E|=m$ edges. Then
 \[2m = \sum_{v \in V} \text{deg}(v) \]
- **Proof:** Every edge contributes +1 to the degree of each of the two vertices it is incident with
 - number of edges is exactly half the sum of $\text{deg}(v)$
 - the sum of the $\text{deg}(v)$ values must be even
Graph Representations

- Space and time are analyzed in terms of:
 - Number of vertices, \(n = |V| \) and
 - Number of edges, \(m = |E| \)
- There are at least two ways of representing graphs:
 - The **adjacency matrix** representation
 - The **adjacency list** representation

Adjacency Matrix

\[
M(v, w) = \begin{cases}
1 & \text{if } (v, w) \text{ is in } E \\
0 & \text{otherwise}
\end{cases}
\]

Space = \(|V|^2 \)

Adjacency List

For each \(v \) in \(V \), \(L(v) = \) list of \(w \) such that \((v, w)\) is in \(E \)

Space = \(a |V| + 2b |E| \)
Adjacency List for a Digraph

For each v in V, $L(v) =$ list of w such that (v, w) is in E

Trees

- An undirected graph is a tree if it is connected and contains no cycles.
- A directed graph is a directed tree if it has a root and its underlying undirected graph is a tree.
- $r \in V$ is a root if every vertex $v \in V$ is reachable from r; i.e., there is a directed path which starts in r and ends in v.

Alternative Definitions of Undirected Trees

- G is cycles-free, but if any new edge is added to G, a cycle is formed.
- For every pair of vertices u,v, there is a unique, simple path from u to v.
- G is connected, but if any edge is deleted from G, the connectivity of G is interrupted.
- G is connected and has $n-1$ edges.

Topological Sort

Problem: Find an order in which all these courses can be taken.

Example: 142 143 378 326 421 401

In order to take a course, you must take all of its prerequisites first.
Topological Sort

Given a digraph $G = (V, E)$, find a linear ordering of its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering.

Topo sort - good example

Any linear ordering in which all the arrows go to the right is a valid solution.

Note that F can go anywhere in this list because it is not connected. Also the solution is not unique.

Topo sort - bad example

Any linear ordering in which an arrow goes to the left is not a valid solution.

Paths and Cycles

- Given a digraph $G = (V,E)$, a path is a sequence of vertices v_1, v_2, \ldots, v_k such that:
 - (v_i, v_{i+1}) in E for all $1 \leq i < k$
 - path length = number of edges in the path
 - path cost = sum of costs of participating edges
- A path is a cycle if:
 - $k > 1$ and $v_1 = v_k$
- G is acyclic if it has no cycles.
Only acyclic graphs can be topologically sorted

- A directed graph with a cycle cannot be topologically sorted.

There is no valid ordering of A, B, C, D

Topo sort algorithm - 1

Step 1: Identify vertices that have no incoming edges
- The “in-degree” of these vertices is zero

Topo sort algorithm - 1a

Step 1: Identify vertices that have no incoming edges
- If no such vertices, graph has only cycle(s)
- Topological sort not possible – Halt.

Example of an ‘only-cycles’ graph

Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges
- Select one such vertex
Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

Continue until done

Repeat **Step 1** and **Step 2** until graph is empty (or until HALT due to cycles-only').

Example (cont') - B

Select B. Copy to sorted list. Delete B and its edges.

C

Select C. Copy to sorted list. Delete C and its edges.
Select D. Copy to sorted list. Delete D and its edges.

Select E. Copy to sorted list. Delete E and its edges. Select F. Copy to sorted list. Delete F and its edges.

Yes, we could select F earlier (in any step). The topological sort is not necessarily unique.

Done

Implementation

Assume adjacency list representation

Translation array

value next
Calculate In-degrees

In-Degree array; or add a field to array A

<table>
<thead>
<tr>
<th>D</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Key idea: Initialize and maintain a queue (or stack) of vertices with In-Degree 0

Queue: 1 6

After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree becomes zero

Time Complexity: $O(n+m)$.

Topo Sort using a Queue (breadth-first)
Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the queue:
 (a) Dequeue and output a vertex
 (b) Reduce In-Degree of all vertices adjacent to it by 1
 (c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.

Topological Sort Analysis

- Initialize In-Degree array: $O(|V| + |E|)$
- Initialize Queue with In-Degree 0 vertices: $O(|V|)$
- Dequeue and output vertex:
 - $|V|$ vertices, each takes only $O(1)$ to dequeue and output: $O(|V|)$
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 - $O(|E|)$ (total out_degree of all vertices)
- For input graph $G=(V,E)$ run time = $O(|V| + |E|)$
 - Linear time!

Some Detail

Main Loop

```
while notEmpty(Q) do
  x := Dequeue(Q)
  Output(x)
  y := A[x];
  while y ≠ null do
    D[y.value] := D[y.value] - 1;
    if D[y.value] = 0 then Enqueue(Q,y.value);
    y := y.next;
  endwhile
endwhile
```

Time complexity? $O(\text{out_degree}(x))$.

Topo Sort using a Stack (depth-first)

After each vertex is output, when updating In-Degree array, push any vertex whose In-Degree becomes zero