Analyzing Algorithms

CSE 326
Data Structures

Algorithm Analysis: Why?

• Correctness:
 › Does the algorithm do what is intended?
• Performance:
 › What is the running time of the algorithm?
 › How much storage does it consume?
• Different algorithms may correctly solve a given task
 › Which should I use?

Evaluating an algorithm

Mike: My algorithm can sort 10^6 numbers in 3 seconds.
Bill: My algorithm can sort 10^6 numbers in 5 seconds.

Mike: I've just tested it on my new Pentium IV processor.
Bill: I remember my result from my undergraduate studies (19xx).

Mike: My input is a random permutation of $1..10^6$.
Bill: My input is the sorted output, so I only need to verify that it is sorted.

Program Evaluation / Complexity

• Processing time is surely a bad measure!!!
• We need a ‘stable’ measure, independent of the implementation.
 * A complexity function is a function $T: N \to N$.
 * $T(n)$ is the number of operations the algorithm does on an input of size n.
 * “Input” generally refers to parameters or data
• We can try to calculate at least three different things.
 • Worst-case complexity
 • Best-case complexity
 • Average-case complexity
The RAM Model of Computation

- Each simple operation takes 1 time step.
 - E.g. elementary arithmetic operations and assignments
- Loops and subroutines are not simple operations.
- Each memory access takes one time step, and there is no shortage of memory.
For a given problem instance:
- Running time of an algorithm = # RAM steps.
- Space used by an algorithm = # RAM memory cells

useful abstraction ⇒ allows us to analyze algorithms in a machine independent fashion.

Why the RAM Model is Justified

- Most CPUs have a similar basic instruction set
 - Similar operations take similar numbers of machine steps, to a constant factor
 - As technology improves, speed up is generally linear (a constant factor)

Big O Notation

- Goal:
 - Be able to compare complexity function
 - A stable measurement independent of the machine.
- Way:
 - ignore constant factors.
 - f(n) = O(g(n)) if c g(n) is upper bound on f(n)
 - There exist c, N, s.t. for any n ≥ N, f(n) ≤ c g(n)

Consider large inputs (asymptotic behavior) Ignore constants

For all n ≥ 5 (N=5)

\[n+120 \leq 5n^2 \]
\[\Rightarrow n+120 = O(n^2) \]
Ω Notation

- \(f(n) = \Omega(g(n)) \) if \(c \cdot g(n) \) is lower bound on \(f(n) \)
 \(\iff \) There exist \(c, N \), s.t. for any \(n \geq N \), \(f(n) \geq c \cdot g(n) \)

Θ Notation

- \(f(n) = \Theta(g(n)) \) if \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \)
 \(\iff \) There exist \(c_1, c_2, N \), s.t. for \(n \geq N \),
 \(c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \)

o Notation ("little o")

- \(f(n) = o(g(n)) \) if \(f(n) = O(g(n)) \) but \(g(n) \neq \Omega(f(n)) \)

Ω, Θ Examples

Examples:

- \(4x^2 + 100 = O(x^2) \)
- \(4x^2 + 100 = \Omega(x^2) \)
- \(4x^2 + 100 = \Theta(x^2) \)
- \(4x^2 - 100 = O(x^2) \)
- \(123400 = O(1) \)
- \(4x^2 + 100 \neq \Theta(x^3) \)
- \(4x^2 + 100 = O(x^3) \)
- \(4x^2 + 100 = \Omega(x) \)
- \(4x^2 + x \log x = O(x^2) \)
Growth Rates

- Even by ignoring constant factors, we can get an excellent idea of whether a given algorithm will be able to run in a reasonable amount of time on a problem of a given size.
- The “big O” notation and worst-case analysis are tools that greatly simplify our ability to compare the efficiency of algorithms.

Practical Complexity

- $f(n) = n$
- $f(n) = \log(n)$
- $f(n) = n \log(n)$
- $f(n) = n^2$
- $f(n) = n^3$
- $f(n) = 2^n$
Practical Complexity

![Graph showing the growth of various functions](image)

- \(f(n) = n \)
- \(f(n) = \log(n) \)
- \(f(n) = n \log(n) \)
- \(f(n) = n^2 \)
- \(f(n) = n^3 \)
- \(f(n) = 2^n \)

Big O Fact

- A polynomial of degree \(k \) is \(O(n^k) \)
- Proof:
 - Suppose \(f(n) = b_kn^k + b_{k-1}n^{k-1} + \ldots + b_1n + b_0 \)
 - Let \(a = \max_i(b_i) \)
 - \(f(n) \leq an^k + an^{k-1} + \ldots + an + a \)
 - \(\leq kan^k \) (for \(c = ka \)).

Iterative Algorithm for Sum

- Find the sum of the first \(\text{num} \) integers stored in an array \(v \).

```pseudocode
sum(v[]): integer array, num: integer): integer{
    temp_sum: integer;
    temp_sum := 0;
    for i := 0 to num - 1 do
        temp_sum := v[i] + temp_sum;
    return temp_sum;
}
```

Note the use of pseudocode

Programming via Recursion

- Write a recursive function to find the sum of the first \(\text{num} \) integers stored in array \(v \).

```pseudocode
sum (v[]): integer array, num: integer): integer {
    if (num = 0) then
        return 0
    else
        return (v[num-1] + sum(v,num-1));
}
```

6/22/2004 17
6/22/2004 18
6/22/2004 19
6/22/2004 20
Pseudocode

- In the lectures algorithms will sometimes be presented in pseudocode.
 - This is very common in the computer science literature
 - Pseudocode is usually easily translated to real code.
 - This is programming language independent
- Pseudocode can also be used for pencil-and-paper homework

Review: Induction

- Suppose
 - $S(k)$ is true for fixed constant k
 - Often $k = 0$
 - $S(n)$ implies $S(n+1)$ for all $n \geq k$
- Then $S(n)$ is true for all $n \geq k$

Proof By Induction

- Claim: $S(n)$ is true for all $n \geq k$
- Base:
 - Show $S(n)$ is true for $n = k$
- Inductive hypothesis:
 - Assume $S(n)$ is true for an arbitrary n
- Step:
 - Show that $S(n)$ is then true for $n+1$

Induction Example: Geometric Closed Form

- Prove $a^0 + a^1 + \ldots + a^n = (a^{n+1} - 1)/(a - 1)$ for all $a \neq 1$
 - Basis: 1. show that $a^0 = (a^0 - 1)/(a - 1)$:
 - $a^0 = 1 = (a^1 - 1)/(a - 1)$.
 2. Show true for $n=2$.
 - Inductive hypothesis:
 - Assume $a^0 + a^1 + \ldots + a^n = (a^{n+1} - 1)/(a - 1)$
 - Step (show true for $n+1$):
 - $a^0 + a^1 + \ldots + a^n + a^{n+1} = a^0 + a^1 + \ldots + a^n + a^{n+1}$
 - $= (a^{n+1} - 1)/(a - 1) + a^{n+1} = (a^{n+1} - 1)/(a - 1) + (a^{n+1} - 1)/(a - 1)$
Program Correctness by Induction

- **Basis Step**: $\text{sum}(v,0) = 0$.
- **Inductive Hypothesis (n=k)**: Assume $\text{sum}(v,k)$ correctly returns sum of first k elements of v, i.e., $v[0]+v[1]+\ldots+v[k-1]$.
- **Inductive Step (n=k+1)**: $\text{sum}(v,n)$ returns $v[k]+\text{sum}(v,k)$ which is the sum of first $k+1$ elements of v.

Algorithms vs Programs

- Proving correctness of an algorithm is very important:
 - a well designed algorithm is guaranteed to work correctly and its performance can be estimated.
- Proving correctness of a program (an implementation) is fraught with weird bugs:
 - Abstract Data Types are a way to bridge the gap between mathematical algorithms and programs.

Moore’s Law

- Moore’s Law: Transistor density doubles roughly every 18 months:
 - Translates into a CPU speed-up of the same amount.
 - Has been true for 20 years.
- Similar “laws” have been observed in some other technology areas.
- Question for discussion: why doesn’t Moore’s law save us from worrying about efficiency?