Today, we will review:

- **Big-Oh**, Little-Oh, Omega (Ω), and Theta (Θ):
 (Fraternities of functions…)
- Examples of time and space efficiency analysis

Covered in Chapter 2 of the text
Big-Oh and Omega

- \(T(N) = O(f(N)) \) if there are positive constants \(c \) and \(n_0 \) such that \(T(N) \leq cf(N) \) for \(N \geq n_0 \).
- E.g. \(100 \log N, 53, N^{0.99}, 0.0001 N, 2^{100} N + \log N \) are all \(= O(N) \).
- What if \(T(N) \geq cf(N) \) for \(N \geq n_0 \) ?

- \(T(N) = \Omega(f(N)) \) if there are positive constants \(c \) and \(n_0 \) such that \(T(N) \geq cf(N) \) for \(N \geq n_0 \).
- E.g. \(2^N, N^{\log N}, N^{1.002}, 0.0001 N, N + \log N \) are all \(= \Omega(N) \).
- What if \(T(N) \) is both \(O(f(N)) \) and \(\Omega(f(N)) \) ?
Theta and Little-Oh

- \(T(N) = \Theta(f(N)) \) if and only if \(T(N) = O(f(N)) \) and \(T(N) = \Omega(f(N)) \)
- E.g. \(0.0001N, 2^{100}N + \log N \) are all \(\Theta(N) \)
- \(T(N) = o(f(N)) \) iff \(T(N) = O(f(N)) \) and \(T(N) \neq \Theta(f(N)) \)
- E.g. \(100\log N, N^{0.9}, \sqrt{N}, 17 \) are all \(o(N) \)

Big-Oh, Omega, Theta, and Little-Oh

- **Tips to guide your intuition:**
- Think of \(O(f(N)) \) as “**less than or equal to**” \(f(N) \)
 - Upper bound, “grows slower than or same rate as” \(f(N) \)
- Think of \(\Omega(f(N)) \) as “**greater than or equal to**” \(f(N) \)
 - Lower bound, “grows faster than or same rate as” \(f(N) \)
- Think of \(\Theta(f(N)) \) as “**equal to**” \(f(N) \)
 - “Tight” bound, same growth rate
- Think of \(o(f(N)) \) as “**strictly less than**” \(f(N) \)
 - Strict upper bound
 - \(T(N) = o(f(N)) \) means \(T(N) \) grows strictly slower than \(f(N) \)
- *(True for large \(N \) and ignoring constant factors)*
Big-Oh Analysis: Example 1

Problem: Find the sum of the first num integers stored in array v. Assume $\text{num} \leq \text{size of } v$.

```
public static int sum ( int [ ] v, int num)
{
    int temp_sum = 0;
    for ( int i = 0; i < num; i++ )
        temp_sum += v[i] ;
    return temp_sum;
}
```

Running time = ?

- i goes from 0 to $\text{num}-1$ = num iterations
- lines 1, 3, and 4 take fixed (constant) amount of time
- Running time = constant + (num)*constant = $O(\text{num})$
- Actually, $\Theta(\text{num})$
Big-Oh Analysis: Example 1 (Recursion)

Recursive function to find the sum of the first \(\text{num}\) integers stored in array \(\text{v}\):

```java
public static int sum ( int [ ] v, int num)
{
    if (num == 0) return 0;
    else return sum(v,num-1) + v[num-1];
}
```

• Running time = ?

Big-Oh Analysis: Example 1 (Recursion)

Recursive function to find the sum of first \(\text{num}\) integers in \(\text{v}\):

```java
public static int sum ( int [ ] v, int num)
{
    if (num == 0) return 0; // constant time \(T_1\) for “if”
    else return sum(v,num-1) + v[num-1];
        // constant time + \(T(\text{num-1})\) = \(T_2 + T(\text{num-1})\)
}
```

• Let \(T(\text{num})\) be the running time of \(\text{sum}\)
• Then, \(T(\text{num}) = T_1 + T_2 + T(\text{num-1}) = c + T(\text{num-1})\)
• \(= 2c + T(\text{num-2}) = ... = \text{num}c + T(0) = \text{num}c + c_1\)
• \(= \Theta(\text{num})\) (same as iterative algorithm!)
Common recurrence relations in analysis of algorithms:

\[T(N) = T(N-1) + \Theta(1) \Rightarrow T(N) = O(N) \]

\[T(N) = T(N-1) + \Theta(N) \Rightarrow T(N) = O(N^2) \]

\[T(N) = T(N/2) + \Theta(1) \Rightarrow T(N) = O(\log N) \]

\[T(N) = 2T(N/2) + \Theta(N) \Rightarrow T(N) = O(N \log N) \]

How do you get these? Just expand the right side and count!

Note: Multiplicative constants matter in recurrence relations:

\[T(N) = 4T(N/2) + \Theta(N) \]

is \(T(N) = O(N) \) ? \(O(N \log N) \)? \(O(N^2) \)?

These recurrences in their full glory in future lectures we will see…
Example 2: Fibonacci Numbers

- Recall our old friend Signor Fibonacci and his numbers:

\[1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots \]

- First two are defined to be 1
- Rest are sum of preceding two
- \[F_n = F_{n-1} + F_{n-2} \quad (n > 1) \]

Leonardo Pisano
Fibonacci (1170-1250)

Example 2: Recursive Fibonacci

- public static int fib(int N) {
 if (N < 0) return 0; //invalid input
 if (N == 0 || N == 1) return 1; //base cases
 else return fib(N-1)+fib(N-2);
}

- Running time \(T(N) = ? \)
Example 2: Recursive Fibonacci

- public static int fib(int N) {

 if (N < 0) return 0; // time = 1 for the < operation
 if (N == 0 || N == 1) return 1; // time = 3 for 2 ==, 1 ||
 else return fib(N-1)+fib(N-2); // T(N-1)+T(N-2)+1

 }

- Running time T(N) = T(N-1) + T(N-2) + 5

- Using F_n = F_{n-1} + F_{n-2} we can show by induction that
 T(N) ≥ F_N. We can also show by induction that
 F_N ≥ (3/2)^N

Therefore, T(N) ≥ (3/2)^N

i.e. T(N) = Ω((1.5)^N)

Yikes... exponential running time!
Example 2: Iterative Fibonacci

```java
public static int fib_iter(int N) {
    int fib0 = 1, fib1 = 1, fibj = 1;
    if (N < 0) return 0; // invalid input
    for (int j = 2; j <= N; j++) { // all fib nos. up to N
        fibj = fib0 + fib1;
        fib0 = fib1;
        fib1 = fibj;
    }
    return fibj;
}
```

Running time = ?

Running time =

\[T(N) = \text{constant} + (N-1)\times \text{constant} = \Theta(N) \]
Example 2: Iterative Fibonacci

```java
public static int fib_iter(int N) {
    int fib0 = 1, fib1 = 1, fibj = 1; // constant time
    if (N < 0) return 0; // constant time
    for (int j = 2; j <= N; j++) { //N-1 iterations
        fibj = fib0 + fib1; // constant time
        fib0 = fib1; // constant time
        fib1 = fibj; // constant time
    }
    return fibj; // constant time
}
```

Running time =
\[T(N) = \text{constant} + (N-1)\text{constant} = \Theta(N) \]
⇒ Exponentially faster than recursive

Example 3: Time and Space Tradeoffs

Problem DUP: Given an array A of n positive integers, are there any duplicates?

For example, A: 34, 9, 40, 87, 223, 109, 58, 9, 71, 8

An easy algorithm for DUP:
for (i = 0; i < N-1; i++)
 for (j = i+1; j < N; j++)
 if (A[i] == A[j]) {
 <print “Duplicates!”> return 0;}
<print “No Duplicates”>

Space required = ?
Example 3: Time and Space Tradeoffs

Problem DUP: Given an array A of n positive integers, are there any duplicates?

An easy algorithm for DUP:
for (i = 0; i < N - 1; i++)
 for (j = i + 1; j < N; j++)
 if (A[i] == A[j]) {
 <print “Duplicates!”> return 0;
 }
<print “No Duplicates”>

Space required (array + 2 variables) = N + 2 = \(\Theta(N)\)
\(\Rightarrow\) Does not depend on size of values stored in A

Running time: How many steps in the worst case?

R. Rao, CSE 326

Example 3: Time and Space Tradeoffs

Analyze the running time of easy algorithm for DUP:
for (i = 0; i < N - 1; i++) // N-1 iterations
 for (j = i + 1; j < N; j++) // N-i-1 iterations
 if (A[i] == A[j]) { // constant time c
 <print “Duplicates!”> return 0;
 }
<print “No Duplicates”>

Worst case = no duplicates. Total time = ?

\[
\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} c(N - i - 1) = c \sum_{i=1}^{N-1} N - c \sum_{i=1}^{N-1} i - c(N - 1)
\]

\[
= cN(N - 1) - c \frac{(N - 1)N}{2} - c(N - 1) = \Theta(N^2)
\]

R. Rao, CSE 326
Example 3: Trading more space for less time

- New Algorithm for DUP:
 - Idea: Use A[i] as index into new array B initialized to 0’s
 - for (i = 0; i < N; i++)
 - if (B[A[i]] == 1) { // value in A[i] already present
 <print “Duplicates!”> return 0;
 }
 - else B[A[i]] = 1; // mark value in A[i] as present
 <print “No Duplicates”>
 - Similar to detecting collisions in hashing (Chapter 5)
- Worst Case Running Time = ?
- Space Required = ?

Worst Case Running Time = $O(N)$

Space Required = $O(2^m)$ where m is the number of bits required to represent the largest value that can potentially occur in A. E.g. $m = 8$ if max value of A[i] = 255.

Prev. algorithm: more time [$\Theta(N^2)$] but less space [$\Theta(N)$]

Such tradeoffs between space and time are common…
Example 4: Searching for an Item

- Problem: Search for an item X in a sorted array A. Return index of item if found, otherwise return -1.
- Brainstorming: What is an efficient way of doing this?

<table>
<thead>
<tr>
<th>A</th>
<th>-4</th>
<th>-3</th>
<th>5</th>
<th>7</th>
<th>12</th>
<th>35</th>
<th>56</th>
<th>98</th>
<th>101</th>
<th>124</th>
</tr>
</thead>
</table>

$X=101$

$A[mid]=X$

Found!

Return $Mid = 8$
Example 4: Binary Search

```
public static int BinarySearch( int [ ] A, int X, int N )
{
    int Low = 0, Mid, High = N - 1;
    while( Low <= High )
    {
        Mid = ( Low + High ) / 2; // Find middle of array
        if ( X > A[ Mid ] )     // Search second half of array
            Low = Mid + 1;
        else if ( X < A[ Mid ] ) // Search first half
            High = Mid - 1;
        else return Mid;        // Found X!
    }
    return NOT_FOUND;
}
```

Example 4: Running Time of Binary Search

- Given an array A with N elements, what is the worst case running time of BinarySearch?
- Think about it over the weekend…
- We will discuss the answer in the next class
To Do List:

Homework no. 1 (due Monday 11pm)

Begin reading Chapters 3 and 4

Next Week:
1. Review of Lists, Stacks, and Queues
2. The wonderful world of Trees!

May the Big-Oh be with you…