Lecture 24: How to become Famous with P and NP

✧ Agenda for today’s class:
 ➤ The complexity class P
 ➤ The complexity class NP
 ➤ NP-completeness
 ➤ The P =? NP problem
 ✦ Major extra-credit problem (due: whenever)
 ➤ Fun with Golf Pencils (fill out Evals)

From Last Time: Polynomial vs. Exponential Running Time

<table>
<thead>
<tr>
<th></th>
<th>log N</th>
<th>N log N</th>
<th>N^2</th>
<th>2^N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>30</td>
<td>100</td>
<td>1024</td>
</tr>
<tr>
<td>100</td>
<td>7</td>
<td>700</td>
<td>10,000</td>
<td>1,000,000,000,000,000</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
<td>10,000</td>
<td>1,000,000</td>
<td>Fo’gettaboutit!</td>
</tr>
<tr>
<td>1,000,000</td>
<td>20</td>
<td>20,000,000</td>
<td>1,000,000,000,000</td>
<td>ditto</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>30</td>
<td>30,000,000,000</td>
<td>1,000,000,000,000,000</td>
<td>mega ditto plus</td>
</tr>
</tbody>
</table>
Polynomial versus Exponential Time

- Most of our algorithms so far have been $O(\log N)$, $O(N)$, $O(N \log N)$ or $O(N^2)$ running time for inputs of size N
 - These are all polynomial time algorithms
 - Their running time is $O(N^k)$ for some $k > 0$
- Exponential time B^N is asymptotically worse than any polynomial function N^k for any k
 - For any k, N^k is $o(B^N)$ for any constant $B > 1$
- Polynomial time algorithms are generally regarded as “fast” algorithms – these are the kind we want!
- Exponential time algorithms are generally inefficient – avoid these!

The “complexity” class P

- The set P is defined as the set of all problems that can be solved in polynomial worse case time
 - Also known as the polynomial time complexity class
- P contains all problems for which algorithms exist whose worst case running time is $O(N^k)$ for some k
- Thus, $P =$ class of “easy” or “tractable” problems for which fast (i.e. polynomial time) algorithms exist
What’s in P?

✦ **Examples of problems in P:**
 - Searching
 - Sorting
 - Topological sort
 - Single-source shortest path
 - Euler circuit, etc.

Finding my circuits is easy and in P!

L. Euler (1707-1783)

Well, what about mine?

W. R. Hamilton (1805-1865)

Introducing...the “complexity” class NP

✦ **Definition:** NP is the set of all problems for which a given candidate solution can be tested in polynomial time
 - Suppose someone gives you a solution (e.g., by guessing). You should be able to test or verify it in polynomial time

✦ Note: Testing a given “solution” is typically easier than solving or finding the correct solution!
 - Finding the correct solution may take exponential time but checking is usually much easier and faster
What’s the deal with the name NP?

✦ NP stands for **Nondeterministic Polynomial time**

✦ **Why “nondeterministic”?**
 ➥ Corresponds to algorithms that can search all possible solutions in parallel and pick the correct one
 ➥ Each solution should be “checkable” in polynomial time

✦ Nondeterministic algorithms don’t exist – purely theoretical idea invented to understand how hard a problem could be

A Nondeterministic Algorithm for Searching

✦ **Problem:** Given a list of integers \(A_1, \ldots, A_N \), is integer \(X \) in the list?

✦ **Nondeterministic Algorithm:**
 1. Guess an index \(i \) between 1 and \(N \)
 2. If \(A_i = X \), then Output “Yes”

✦ **Alternate description:**
 ➥ Nondeterministic algorithm produces \(N \) “parallel processes”
 ➥ Each process checks if its \(A_i = X \)
 ➥ Algorithm outputs “Yes” if at least one process outputs “Yes”
Nondeterministic Algorithm for Searching

Guess Index

\[
\begin{align*}
&i=1 \quad i=2 \quad \ldots \ldots \quad i=N \\
&\text{Check if} \quad A_i = X \\
&\text{Check if} \quad A_N = X? \\
&\text{Output “Yes” if any one of these processes outputs “Yes”}
\end{align*}
\]

Is dis an NP algorithm?

Other problems in NP

- **Recall our friend from last time, the Hamiltonian circuit problem**: Find a cycle that goes through each vertex exactly once.
- Given a candidate path, can test in linear time if it is a Hamiltonian circuit.
- NP algorithm for HC:
 - Guess a candidate path
 - Check if all vertices are visited exactly once in this candidate path (except start/finish vertex)
 - Can check in time polynomial in \(|V|\)

Pray tell me, why is my problem in NP?

W. R. Hamilton (1805-1865)
Other problems in NP

✦ Sorting: Can test in linear time if a candidate ordering is sorted
✦ But sorting is also in P.
 ⇒ Are any other problems in P also in NP?

I dunno…I’m not a CSE student, I’m just a bad actor

The Intimate Relationship between P and NP

✦ Sorting is in P. Are any other problems in P also in NP?
 ⇒ YES!
 ⇒ All problems in P are also in NP i.e. P ⊆ NP
 ⇒ If you can solve a problem in polynomial time, can definitely verify a solution in polynomial time
✦ So, some problems in NP like searching, sorting, etc. are also in P.
✦ Question: Are all problems in NP also in P?
 ⇒ Is NP ⊆ P?
Your chance to win a Turing award: P = NP?

✦ Nobody knows whether NP ⊆ P
 ⇒ Proving or disproving this will bring you instant fame!

✦ It is generally believed that P ≠ NP i.e. there are problems in NP that are not in P
 ⇒ But no one has been able to show even one such problem

✦ A very large number of problems are in NP (such as the Hamiltonian circuit problem) but not known to be in P
 ⇒ No one has found fast (polynomial time) algorithms for these problems
 ⇒ No one has been able to prove such algorithms don’t exist (i.e. that these problems are not in P)!

NP-complete problems

✦ The “hardest” problems in NP are called NP-complete (NPC) problems

✦ Why “hardest”? A problem X is NP-complete if:
 1. X is in NP and
 2. any problem Y in NP can be converted to X in polynomial time such that solving X also provides a solution for Y

(If only 2 holds, X is said to be NP-hard)

Input to Y ➔ “Converter” Algorithm ➔ Input to X (runs in poly time)

We say that problem Y can be reduced to X
Note: X is NP-hard if all problems in NP can be reduced to X
More on NP-complete problems

- Note that if X is NP-complete, **solving X also provides a solution for all problems Y in NP**
 - Just use the converter to convert input for Y to input for X and run the algorithm for X
 - Using algorithm for X as a **subroutine** to solve Y

<table>
<thead>
<tr>
<th>Input to Y</th>
<th>Converter</th>
<th>Input to X</th>
<th>Algorithm for X</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>All problems Y in NP</td>
<td>Algorithm for X</td>
<td>Solution (any NPC problem)</td>
<td>Convert input</td>
<td></td>
</tr>
</tbody>
</table>

The Power of NP-completeness

- Thus, **if you find a poly time algorithm for just one NPC problem X, all problems in NP can be solved in poly time**
- **Example:** The Hamiltonian circuit problem can be shown to be NP-complete (not so easy to prove from scratch!)
P, NP, and Exponential Time Problems

✦ All algorithms for NP-complete problems so far have tended to run in nearly exponential worst case time
 ➤ But this doesn’t mean fast sub-exponential time algorithms don’t exist! Not proven yet…
✦ Diagram depicts relationship between P, NP, and EXPTIME (class of problems that can be solved within exponential time)

It is believed that $P \neq NP \neq EXPTIME$

The “graph” of NP-completeness

✦ Cook first showed (in 1971) that satisfiability of Boolean formulas (SAT) is NP-complete
✦ Hundreds of other problems (from scheduling and databases to optimization theory) have since been shown to be NPC
✦ How? By giving an algorithm for converting a known NPC problem to your pet problem in poly time. Then, your problem is also NPC!
Showing NP-completeness: An Example

✦ Consider the **Traveling Salesperson (TSP) Problem**:
 Given a fully connected, weighted graph \(G = (V, E) \), is there a cycle that visits all vertices exactly once and has total cost \(\leq K \)?

✦ TSP is in NP (why?)

✦ Can we show TSP is NP-complete? How?

Can we show TSP is NP-complete?

⇒ We know Hamiltonian Circuit (HC) is NPC
⇒ Can show TSP is also NPC if we can convert any input for HC to an input for TSP in poly time (Why?)
⇒ Because all NP problems can be reduced to HC (definition of NPC) which can now be reduced to TSP
TSP is NP-complete!

- We can show TSP is also NPC if we can convert any input for HC to an input for TSP in poly time. Here’s one way: Just assign weight of 1 for all existing edges and 2 to new edges.

Can prove: This graph has a Hamiltonian circuit iff this fully connected graph has a TSP cycle of total cost \(\leq K = |V| \) (here, \(K = 5 \)).

Coping with NP-completeness

- Given that it is difficult to find fast algorithms for NPC problems, what do we do?
- Alternatives:
 1. **Dynamic programming**: Avoid repeatedly solving the same subproblem – use table to store results (see Chap. 10)
 2. **Settle for algorithms that are fast on average**: Worst case still takes exponential time, but doesn’t occur very often
 3. **Settle for fast algorithms that give near-optimal solutions**: In TSP, may not give the cheapest tour, but maybe good enough
 4. **Try to get a “wimpy exponential” time algorithm**: It’s okay if running time is \(O(1.00001^N) \) – bad only for \(N > 1,000,000 \)
Yawn…What does all this have to do with data structures and programming?

- **Top 5 reasons to know and understand NP-completeness:**

 5. What if there’s an NP-completeness question in the final?

 4. When you are having a tough time programming a fast algorithm for a problem, you could show it is NP-complete

 3. When you are having a tough time programming a fast algorithm for a problem, you could just say it is NPC (and many will believe you (yes, it’s a sad state of affairs))

 2. When you are at a cocktail party, you can impress your friends with your profound knowledge of NP-completeness

 1. Make money with new T-shirt slogan: “And God said: P=NP”

Dat raps up Chapter 9…
Next: Algorithm Dzyne Tekniks
Now: Pencil da evals

Look, Ma, I’m on CSE 326!