Lecture 23: Really, really hard problems: P versus NP

✦ Today’s Agenda:
 ➔ Solving 4th grade pencil-on-paper puzzles
 ♦ A “deep” algorithm for Euler Circuits
 ➔ Euler with a twist: Hamiltonian circuits
 ➔ Hamiltonian circuits and NP complete problems
 ➔ The NP =? P problem
 ♦ Your chance to win a Turing award!
 ♦ Any takers?

✦ Covered in Chapter 9 in the textbook

It’s Puzzle Time!

Which of these can you draw without lifting your pencil, drawing each line only once? Can you start and end at the same point? (end: memories of 4th grade days…)
Graph representation of the puzzle

Can you traverse all edges exactly once, starting and finishing at the same vertex?

Line segments = edges
Junctions = vertices

Euler Circuits

- **Euler tour**: a path through a graph that visits each edge exactly once
- **Euler circuit**: an Euler tour that starts and ends at the same vertex
- **Observations**:
 - An Euler circuit is only possible if the graph is connected and each vertex has even degree (# of edges onto vertex)
 - Why?
 - At every vertex, need one edge to get in and one edge to get out!
Finding Euler Circuits: DFS and then Splice

- Given a graph $G = (V,E)$, find an Euler circuit in G
 - Can check if one exists in $O(|V|)$ time (check degrees)

- Basic Euler Circuit Algorithm:
 1. Do a depth-first search (DFS) from a vertex until you are back at this vertex
 2. Pick a vertex on this path with an unused edge and repeat 1.
 3. Splice all these paths into an Euler circuit

- Running time = $O(|V| + |E|)$

Euler Circuit Example

DFS(A) : A B D F E C A
DFS(B) : B G C B
DFS(G) : G D E G

Splice at A B G C B D F E C A
Euler with a Twist: Hamiltonian Circuits

- Euler circuit: A cycle that goes through each \textit{edge} exactly once
- \textbf{Hamiltonian circuit}: A cycle that goes through each \textit{vertex} exactly once
- Does graph \textbf{I} have:
 - An Euler circuit?
 - A Hamiltonian circuit?
- Does graph \textbf{II} have:
 - An Euler circuit?
 - A Hamiltonian circuit?

Finding Hamiltonian Circuits in Graphs

- Problem: Find a Hamiltonian circuit in a graph $G = (V,E)$
 - Sub-problem: Does G contain a Hamiltonian circuit?
 - Is there an easy (linear time) algorithm for checking this?
Finding Hamiltonian Circuits in Graphs

- Problem: Find a Hamiltonian circuit in a graph $G = (V, E)$
 - Sub-problem: Does G contain a Hamiltonian circuit?
 - No known easy algorithm for checking this…

- One solution: Search through all paths to find one that visits each vertex exactly once
 - Can use your favorite graph search algorithm (DFS!) to find various paths

- This is an exhaustive search (“brute force”) algorithm

- Worst case need to search all paths
 - How many paths??

Analysis of our Exhaustive Search Algorithm

- Worst case need to search all paths
 - How many paths?

- Can depict these paths as a search tree

- Let the average branching factor of each node in this tree be B (= average size of adjacency list for a vertex)

- $|V|$ vertices, each with $\approx B$ branches

- Total number of paths $\approx B \cdot B \cdot B \ldots B = O(B^{|V|})$

- Worst case Exponential time!

Search tree of paths from B
How bad is exponential time?

<table>
<thead>
<tr>
<th>N</th>
<th>log N</th>
<th>N log N</th>
<th>N^2</th>
<th>2^N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>30</td>
<td>100</td>
<td>1024</td>
</tr>
<tr>
<td>100</td>
<td>7</td>
<td>700</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
<td>10,000</td>
<td>1,000,000</td>
<td>Fo’gettaboutit!</td>
</tr>
<tr>
<td>1,000,000</td>
<td>20</td>
<td>20,000,000</td>
<td>1,000,000,000,000</td>
<td>ditto</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>30</td>
<td>30,000,000,000</td>
<td>1,000,000,000,000,000,000</td>
<td>mega ditto plus</td>
</tr>
</tbody>
</table>

Polynomial versus Exponential Time

- Most of our algorithms so far have been $O(\log N)$, $O(N)$, $O(N \log N)$ or $O(N^2)$ running time for inputs of size N
 - These are all polynomial time algorithms
 - Their running time is $O(N^k)$ for some $k > 0$
- Exponential time B^N is asymptotically worse than any polynomial function N^k for any k
 - For any k, N^k is $o(B^N)$ for any constant $B > 1$
- Polynomial time algorithms are generally regarded as “fast” algorithms – these are the kind we want!
- Exponential time algorithms are generally inefficient – avoid these!
The “complexity” class P

- The set P is defined as the set of all problems that can be solved in \textit{polynomial worse case time}
 - Also known as the polynomial time complexity class – contains problems whose time complexity is $O(N^k)$ for some k
- Examples of problems in P: searching, sorting, topological sort, single-source shortest path, Euler circuit, etc.

The “complexity” class NP

- \textbf{Definition}: NP is the set of all problems for which a given candidate solution can be tested in polynomial time

- Example of a problem in NP:
 - \textbf{Our new friend, the Hamiltonian circuit problem}: Why is it in NP?
 - Given a candidate path, can test in linear time if it is a Hamiltonian circuit – just check if all vertices are visited exactly once in the candidate path (except start/finish vertex)
Why NP?

- NP stands for **Nondeterministic Polynomial time**
 - Why “nondeterministic”? Corresponds to algorithms that can search all possible solutions in parallel and pick the correct one; each solution can be checked in polynomial time.
 - Nondeterministic algorithms don’t exist—purely theoretical idea invented to understand how hard a problem could be.

- Examples of problems in NP:
 - **Hamiltonian circuit**: Given a candidate path, can test in linear time if it is a Hamiltonian circuit.
 - **Sorting**: Can test in linear time if a candidate ordering is sorted.
 - Sorting is also in P. Are any other problems in P also in NP?

Next Class:
More on P and NP

To Do:
Homework Assignment #5