Lecture 20: Topo-Sort and Dijkstra's Greedy Idea
\checkmark Items on Today's Lunch Menu:
\Rightarrow Topological Sort (ver. $1 \& 2$): Gunning for linear time...
\Rightarrow Finding Shortest Paths

- Breadth-First Search
- Dijkstra's Method: Greed is good!
\downarrow Covered in Chapter 9 in the textbook

Graph Algorithm \#1: Topological Sort

Problem: Find an order in which all these courses can be taken.
Example: 142
$370 \quad 321$
326421

Topological Sort Definition

Topological sorting problem: given digraph $G=(V, E)$, find a linear ordering of vertices such that:
for all edges (v, w) in E, v precedes w in the ordering

F

Topological Sort

Topological sorting problem: given digraph $G=(V, E)$, find a linear ordering of vertices such that: for any edge (v, w) in E, v precedes w in the ordering

R. Rao, CSE 326
(F)
Any linear ordering in which all the arrows go to the right is a valid solution

Topological Sort

Topological sorting problem: given digraph $G=(V, E)$, find a linear ordering of vertices such that:
for any edge (v, w) in E, v precedes w in the ordering

Topological Sort Algorithm

Step 1: Identify vertices that have no incoming edge

- The "in-degree" of these vertices is zero

Topological Sort Algorithm

Step 1: Identify vertices that have no incoming edge

- If no such edges, graph has cycles (cyclic graph)

Topological Sort Algorithm

Step 1: Identify vertices that have no incoming edges

- Select one such vertex

Topological Sort Algorithm

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

Topological Sort Algorithm

Repeat Steps 1 and Step 2 until graph is empty

Topological Sort Algorithm

Repeat Steps 1 and Step 2 until graph is empty

Topological Sort Algorithm

Repeat Steps 1 and Step 2 until graph is empty

Topological Sort Algorithm

Repeat Steps 1 and Step 2 until graph is empty

Final Result:

Summary of Topo-Sort Algorithm \#1

1. Store each vertex's InDegree (\# of incoming edges) in an array
2. While there are vertices remaining:
\Rightarrow Find a vertex with In-Degree zero and output it
\Rightarrow Reduce In-Degree of all vertices adjacent to it by 1
\Rightarrow Mark this vertex (InDegree $=-1$)

In-Degree array

Topological Sort Algorithm \#1: Analysis

For input graph $\mathrm{G}=(V, E)$, Run Time $=$?
Break down into total time required to:
§ Initialize In-Degree array:
$\mathrm{O}(|E|)$
§ Find vertex with in-degree 0:
$|V|$ vertices, each takes $\mathrm{O}(|V|)$ to search In-Degree array.
Total time $=\mathrm{O}\left(\mid V V^{2}\right)$
§Reduce In-Degree of all vertices adjacent to a vertex:
$\mathrm{O}(|E|)$
§Output and mark vertex:
$\mathrm{O}(|V|)$
Total time $=\mathbf{O}\left(|V|^{2}+|E|\right) \quad$ Quadratic time!

Can we do better than quadratic time?

Problem:

Need a faster way to find vertices with in-degree 0 instead of searching through entire in-degree array

Topological Sort (Take 2)

Key idea: Initialize and maintain a queue (or stack) of vertices with In-Degree 0

Queue A F

Topological Sort (Take 2)

After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree has become zero

Topological Sort Algorithm \#2

1. Store each vertex's In-Degree in an array
2. Initialize a queue with all in-degree zero vertices
3. While there are vertices remaining in the queue:
\Rightarrow Dequeue and output a vertex
\Rightarrow Reduce In-Degree of all vertices adjacent to it by 1
\Rightarrow Enqueue any of these vertices whose In-Degree became zero

Sort this digraph!

Topological Sort Algorithm \#2: Analysis

For input graph $\mathrm{G}=(V, E)$, Run Time $=$?
Break down into total time to:
Initialize In-Degree array:
$\mathrm{O}(|E|)$
Initialize Queue with In-Degree 0 vertices:
$\mathrm{O}(|V|)$
Dequeue and output vertex:
$|V|$ vertices, each takes only $\mathrm{O}(1)$ to dequeue and output.
Total time $=\mathrm{O}(|V|)$
Reduce In-Degree of all vertices adjacent to a vertex and
Enqueue any In-Degree 0 vertices:
$\mathrm{O}(|E|)$
R. Rao, CSE 326 Total time $=\mathbf{O}(|\boldsymbol{V}|+|E|) \quad$ Linear running time! ${ }_{20}$

Paths

\uparrow Recall definition of a path in a tree - same for graphs
\rightarrow A path is a list of vertices $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ such that $\left(v_{i}, v_{i+1}\right)$ is in E for all $0 \leq i<n$.

Dallas

Example of a path: $p=\{$ Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle\}

Simple Paths and Cycles

- A simple path repeats no vertices (except the $1^{\text {st }}$ can be the last):
$\Rightarrow p=\{$ Seattle, Salt Lake City, San Francisco, Dallas $\}$
$\Rightarrow p=\{$ Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$
- A cycle is a path that starts and ends at the same node:
$\Rightarrow p=\{\underline{\text { Seattle, Salt Lake City, Dallas, San Francisco, Seattle }\}}$
- A simple cycle is a cycle that repeats no vertices except that the first vertex is also the last
- A directed graph with no cycles is called a DAG (directed acyclic graph) E.g. All trees are DAGs \Rightarrow A graph with cycles is often a drag...

Path Length and Cost

- Path length: the number of edges in the path
- Path cost: the sum of the costs of each edge
\Rightarrow Note: Path length $=$ unweighted path cost $($ edge weight $=1)$

Single Source, Shortest Path Problems

\star Given a graph $\mathrm{G}=(V, E)$ and a "source" vertex s in V, find the minimum cost paths from s to every vertex in V

- Many variations:
\Rightarrow unweighted vs. weighted
\Rightarrow cyclic vs. acyclic
\Rightarrow positive weights only vs. negative weights allowed
\Rightarrow multiple weight types to optimize
\Rightarrow Etc.
\downarrow We will look at only a couple of these...
\Rightarrow See text for the others

Why study shortest path problems?

- Plenty of applications
* Traveling on a "starving student" budget: What is the cheapest multi-stop airline schedule from Seattle to city X?
\downarrow Optimizing routing of packets on the internet:
\Rightarrow Vertices = routers, edges $=$ network links with different delays
\Rightarrow What is the routing path with smallest total delay?
\downarrow Hassle-free commuting: Finding what highways and roads to take to minimize total delay due to traffic
- Finding the fastest way to get to coffee vendors on campus from your classrooms

Unweighted Shortest Paths Problem

Problem: Given a "source" vertex s in an unweighted graph $\mathrm{G}=$ (V, E), find the shortest path from s to all vertices in G

Find the shortest path from C to: A \quad B \quad C \quad D \quad E \quad F $\begin{array}{llll}\text { G } & \text { H }\end{array}$

Solution based on Breadth-First Search

\downarrow Basic Idea: Starting at node s, find vertices that can be reached using $0,1,2,3, \ldots, \mathrm{~N}-1$ edges (works even for cyclic graphs!)

On-board example:

Find the shortest path from C to: A \quad B \quad C \quad D \quad E \quad F \quad G \quad H

Breadth-First Search (BFS) Algorithm

- Uses a queue to store vertices that need to be expanded
- Pseudocode (source vertex is s):

1. Dist [s] = 0
2. Enqueue (s)
3. While queue is not empty
4. $X=$ dequeue
5. For each vertex Y adjacent to X and not previously visited

- Dist $[\mathrm{Y}]=$ Dist $[\mathrm{X}]+1 \quad$ (Prev allows
- Prev[Y] $=\mathrm{X}$
- Enqueue Y
paths to be reconstructed)
\uparrow Running time (same as topological sort) $=\mathbf{O}(|\boldsymbol{V}|+|E|)$ (why?)

That was easy but what if edges have weights?

Does BFS still work for finding minimum cost paths?

Can you find a counterexample (a path) for this graph to show BFS won't work?

What if edges have weights?

\uparrow BFS does not work anymore - minimum cost path may have additional hops

Shortest path from
C to A:
BFS: C A
(cost =9)
Minimum Cost
Path $=\mathrm{C} \quad \mathrm{E} \quad \mathrm{D} \quad \mathrm{A}$ (cost $=8$)

Dijkstra to the rescue...

\downarrow Legendary figure in computer science

- Some rumors collected from previous classes...
- Rumor \#1: Supported teaching introductory computer courses without computers (pencil and paper programming)
- Rumor \#2: Supposedly wouldn't read his e-mail; so, his staff had to print out his e-mails and put them in his mailbox

An Aside: Dijsktra on GOTOs

"For a number of years I have been familiar with the observation that the quality of programmers is a decreasing function of the density of go to statements in the programs they produce."

Opening sentence of: "Go To Statement Considered Harmful" by Edsger W. Dijkstra, Letter to the Editor, Communications of the ACM, Vol. 11, No. 3, March 1968, pp. 147-148.

Dijkstra's Algorithm for Weighted Shortest Path

\downarrow Classic algorithm for solving shortest path in weighted graphs (without negative weights)
\uparrow Example of a greedy algorithm
\Rightarrow Irrevocably makes decisions without considering future consequences
\Rightarrow Sound familiar? Not necessarily the best life strategy... but works in some cases (e.g. Huffman encoding)

Dijkstra's Algorithm for Weighted Shortest Path

- Basic Idea:
\Rightarrow Similar to BFS
- Each vertex stores a cost for path from source
- Vertex to be expanded is the one with least path cost seen so far
- Greedy choice - always select current best vertex
- Update costs of all neighbors of selected vertex
\Rightarrow But unlike BFS, a vertex already visited may be updated if a better path to it is found

Pseudocode for Dijkstra's Algorithm

1. Initialize the cost of each node to ∞
2. Initialize the cost of the source to 0
3. While there are unknown nodes left in the graph
4. Select the unknown node N with the lowest cost (greedy choice)
5. Mark N as known
6. For each node X adjacent to N

If $(N$'s cost $+\operatorname{cost}$ of $(N, X))<X$'s cost
X 's cost $=N$'s cost $+\operatorname{cost}$ of (N, X) $\operatorname{Prev}[X]=N / /$ store preceding node

(Prev allows paths to be reconstructed)

Dijkstra's Algorithm (greed in action)

vertex	known	cost	Prev	vertex	known	cost	Prev
A	No	∞		A			
B	No	∞		B			
C	Yes	0		C			
D	No	∞		D			
E	No	∞		E			
Initial						inal	

Dijkstra's Algorithm (greed in action)

vertex	known	cost	Prev					
A	No	∞	-					
B	No	∞	-					
C	Yes	0	-					
D	No	∞	-					
E	No	∞	-	\rightarrow	vertex	known	cost	Prev
:---:	:---:	:---:	:---:	:---:				
A	Yes	8	D					
B	Yes	10	A					
C	Yes	0	-					
D	Yes	5	E					
E	Yes	2	C					

Initial

Final

Questions for Next Time:

Does Dijkstra's method always work?
How fast does it run?
Where else in life can I be greedy?
To Do:
Start Homework Assignment \#4
(Don't wait until the last few days!!!)
Continue reading and enjoying chapter 9

