Lecture 18: The Dynamic Equivalence Problem
(a.k.a. Disjoint Sets, Union/Find etc.)

✦ The Plot:
 ➤ A new problem: Dynamic Equivalence
 ➤ The setting:
 ♦ Motivation and Definitions
 ➤ The players:
 ♦ Union and Find, two ADT operations
 ♦ Up-tree data structure
 ➤ Suspense-filled cliffhanger (to be continued…next time)

✦ Covered in Chapter 8 of the textbook

Motivation

✦ Consider the relation “=” between integers
 1. For any integer A, A = A
 2. For integers A and B, A = B means that B = A
 3. For integers A, B, and C, A = B and B = C means that A = C

✦ Consider cities connected by two-way roads
 1. A is trivially connected to itself
 2. A is connected to B means B is connected to A
 3. If A is connected to B and B is connected to C, then A is connected to C

✦ Consider electrical connections between components on a computer chip
 ➤ 1, 2, and 3 are again satisfied
Equivalence Relations

✦ An equivalence relation R obeys three properties:
 1. **reflexive**: for any \(x \), \(xRx \) is true
 2. **symmetric**: for any \(x \) and \(y \), \(xRy \) implies \(yRx \)
 3. **transitive**: for any \(x \), \(y \), and \(z \), \(xRy \) and \(yRz \) implies \(xRz \)

✦ Preceding relations are all examples of *equivalence relations*

✦ **What are not equivalence relations?**

- What about “\(\leq \)” on integers? (2 is violated)
- What about “is having an affair with” in a soap opera?
 - Victor i.h.a.a.w. Ashley i.h.a.a.w. Brad does not imply Victor i.h.a.a.w. Brad (i.h.a.a.w. is not transitive)
Equivalence Classes and Disjoint Sets

Any equivalence relation R divides all the elements into **disjoint sets** of “equivalent” items.

Let \sim be an equivalence relation. Then, if $A \sim B$, then A and B are in the **same equivalence class**.

Examples:
- On a computer chip, if \sim denotes “electrically connected,” then sets of connected components form equivalence classes.
- On a map, cites that have **two-way roads between them** form equivalence classes.
- What are the equivalence classes for the relation “Modulo N” applied to all integers?

Equivalence Classes and Disjoint Sets

Let \sim be an equivalence relation. Then, if $A \sim B$, then A and B are in the **same equivalence class**.

Examples:
- The relation “**Modulo N**” divides all integers in N equivalence classes (for the remainders $0, 1, \ldots, N-1$).
 - E.g. Under **Mod 5**:
 - $0 \sim 5 \sim 10 \sim 15 \ldots$
 - $1 \sim 6 \sim 11 \sim 16 \ldots$
 - $2 \sim 7 \sim 12 \sim \ldots$
 - $3 \sim 8 \sim 13 \sim \ldots$
 - $4 \sim 9 \sim 14 \sim \ldots$
 - (5 equivalence classes denoting remainders 0 through 4 when divided by 5)
Union and Find: Problem Definition

✦ Given a set of elements and some equivalence relation ~ between them, we want to figure out the equivalence classes

✦ Given an element, we want to find the equivalence class it belongs to
 ➢ E.g. Under mod 5, 13 belongs to the equivalence class of 3
 ➢ E.g. For the map example, want to find the equivalence class of Redmond (all the cities it is connected to)

✦ Given a new element, we want to add it to an equivalence class (union)
 ➢ E.g. Under mod 5, since 18 ~ 13, perform a union of 18 with the equivalence class of 13
 ➢ E.g. For the map example, Woodinville is connected to Redmond, so add Woodinville to equivalence class of Redmond

Disjoint Set ADT

✦ Stores N unique elements

✦ Two operations:
 ➢ Find: Given an element, return the name of its equivalence class
 ➢ Union: Given the names of two equivalence classes, merge them into one class (which may have a new name or one of the two old names)

✦ ADT divides elements into E equivalence classes, \(1 \leq E \leq N \)
 ➢ Names of classes are arbitrary
 ➢ E.g. 1 through N, as long as Find returns the same name for 2 elements in the same equivalence class
Disjoint Set ADT Properties

✦ Disjoint set equivalence property: every element of a DS ADT belongs to exactly one set (its equivalence class)

✦ Dynamic equivalence property: the set of an element can change after execution of a union

Example:
Initial Classes = \{1,4,8\}, \{2,3\}, \{6\}, \{7\}, \{5,9,10\}
Name of equiv. class underlined

<table>
<thead>
<tr>
<th>find(4)</th>
<th>union(2,6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,4,8}</td>
<td>{6}</td>
</tr>
<tr>
<td>{5,9,10}</td>
<td>{2,3}</td>
</tr>
</tbody>
</table>

Formal Definition (for Math lovers’ eyes only)

✦ Given a set \(U = \{a_1, a_2, \ldots, a_n\} \)

✦ Maintain a partition of \(U \), a set of subsets (or equivalence classes) of \(U \) denoted by \(\{S_1, S_2, \ldots, S_k\} \) such that:
 ➤ each pair of subsets \(S_i \) and \(S_j \) are disjoint: \(S_i \cap S_j = \emptyset \)
 ➤ together, the subsets cover \(U \): \(U = \bigcup_{i=1}^{k} S_i \)
 ➤ each subset has a unique name

✦ Union(a, b) creates a new subset which is the union of a’s subset and b’s subset

✦ Find(a) returns the unique name for a’s subset
Implementation Ideas and Tradeoffs

✦ How about an array implementation?
 ➤ N element array A: A[i] holds the class name for element i
 ➤ Running time for Find(i) = ? (i = some element)
 ➤ Running time for Union(i,j) = ? (i and j are class names)

✦ How about linked lists?
 ➤ One linked list for each equivalence class
 ➤ Class name = head of list
 ➤ Running time for Union(i,j) and Find(i) = ?
Implementation Ideas and Tradeoffs

✦ How about linked lists?
 ➤ One linked list for each class
 ➤ Run time for Union(i,j) = O(1) (append one list to the other)
 ➤ Run time for Find(i) = O(N) (must scan all lists in worst case)

✦ Tradeoff between Union-Find – can we do both in O(1) time?
 ➤ N-1 Unions (the maximum possible) and M Finds = O(N^2 + M) for array or O(N + MN) for linked lists implementation
 ➤ Can we do this in O(M + N) time?

Let’s find a new Data Structure

✦ Intuition: Finding the representative member (= class name) for an element is like the *opposite* of searching for a key in a given set

✦ So, instead of trees with pointers from each node to its children, let’s use [trees with a pointer from each node to its parent](#)

✦ Such trees are known as Up-Trees
Up-Tree Data Structure

- Each equivalence class (or discrete set) is an up-tree with its root as its representative member
- All members of a given set are nodes in that set’s up-tree
- Hash table maps input data to a node. E.g. input string to integer index

Up-trees are not necessarily binary!

A neat implementation trick for Up-Trees

- Forest of up-trees can easily be stored in an array (call it “up”)
- If node names are integers or characters, can use a very simple, perfect hash function: Hash(X) = X
- up[X] = parent of X;
 -1 if root

Array up:

<table>
<thead>
<tr>
<th>0 (a)</th>
<th>1 (b)</th>
<th>2 (c)</th>
<th>3 (d)</th>
<th>4 (e)</th>
<th>5 (f)</th>
<th>6 (g)</th>
<th>7 (h)</th>
<th>8 (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>7</td>
<td>-1</td>
</tr>
</tbody>
</table>
Example of Find

Find: Just follow parent pointers to the root!

```
find(f) = c
find(e) = a
```

Runtime = ?

Array up:

```
0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)
-1 0 -1 0 1 2 -1 -1 7
```

Example of Union

Union: Just hang one root from the other!

```
union(c, a)
```

Runtime = ?

Array up:

```
0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)
2 0 -1 0 1 2 -1 -1 7
```

Change a (from -1) to c (= 2)
A more detailed example

Initial Sets:

 Union(b,e)

A more detailed example…

 Union(a,d)
A more detailed example…

Union(a,b)

A more detailed example…

Union(d,e) – But (you say) d and e are not roots!
May be allowed in some implementations – do Find first to get roots
Since Find(d) = Find(e), union already done!

Thought-Provoking Question 1: While we’re finding e, could we do something to speed up Find(e) next time? (hold that thought!)
A more detailed example (continued)

Union(h,i)

A more detailed example…

Union(c,f)
A more detailed example

Union(c,a)

A more detailed example

TP Q2: Could we do a better job on this union for faster finds in future?

Implementation of Find and Union

```java
public int Find(int X) {
    // Assumes X = Hash(X_Element)
    // X_Element could be str/char etc.
    if (up[X] < 0) // Root
        return X; //Return root = set name
    else        //Find parent
        return Find(up[X]);
}
```

Runtime of Find: $O(\text{max height})$

Height depends on previous Unions

Best case: 1-2, 1-3, 1-4,… $O(1)$

Worst case: 2-1, 3-2, 4-3,… $O(N)$

Runtime of Union: $O(1)$

Can we do better?
Let’s look back at our example…

Could we do a better job on this Union? What happened to e?

Speeding Up Union/Find: Union-by-Size

- For M Finds and N-1 Unions, worst case time is O(MN+N)
 - Can we speed things up by being clever about growing our up-trees?
- Idea: In Union, always make root of larger tree the new root
- Why? Minimizes height of the new up-tree
Trick for Storing Size Information

Instead of storing -1 in root, store up-tree size as negative value in root node.

Union-by-Size Code

```java
public void Union(int X, int Y) {
    //X, Y are root nodes
    //containing (-size) of up-trees
    assert(up[X] < 0);
    assert(up[Y] < 0);

    if (-up[X] > -up[Y]) { //update size of X and root of Y
        up[X] += up[Y];
        up[Y] = X;
    } else { //size of X <= size of Y
        up[Y] += up[X];
        up[X] = Y;
    }
}
```

New run time of Union = ?
New run time of Find = ?
Union-by-Size: Analysis

- Finds are $O(\text{max up-tree height})$ for a forest of up-trees containing N nodes
- Number of nodes in an up-tree of height h using union-by-size is $\ge 2^h$

- Pick up-tree with max height
- Then, $2^{\text{max height}} \le N$
- max height $\le \log N$
- Find takes $O(\log N)$

Base case: $h = 0$, tree has $2^0 = 1$ node
Induction hypothesis: Assume true for $h < h'$

Induction Step: New tree of height h' was formed via union of two trees of height $h' - 1$
Each tree then has $\ge 2^{h' - 1}$ nodes by the induction hypothesis
So, total nodes $\ge 2^{h' - 1} + 2^{h' - 1} = 2^{h'}$
Therefore, True for all h

Union-by-Height

- Textbook describes alternative strategy of Union-by-height
- Keep track of height of each up-tree in the root nodes
- Union makes root of up-tree with greater height the new root
- Same results and similar implementation as Union-by-Size
 - Find is $O(\log N)$ and Union is $O(1)$
Suspense-filled questions to ponder over…

✦ While doing a find(e), can we do something to speed up future find(e) calls?
✦ How much speed-up can we get?
✦ What is the source of the dark matter in the universe?

To be continued next class…
(same place, same time)

Meanwhile…
Finish reading chapter 8