CSE 326 Lecture 17: Out of Sorts

✦ **Items on Today’s Menu:**
 - How fast can we sort?
 - Lower bound on comparison-based sorting
 - Tricks to sort faster than the lower bound
 - External versus Internal Sorting
 - Practical comparisons of internal sorting algorithms
 - Summary of sorting

✦ Covered in Chapter 7 of the textbook

How fast can we sort?

✦ Heapsort, Mergesort, and Quicksort all run in O(N log N) best case running time

✦ Can we do any better?

✦ Can we believe hacker/hackeress Pat Swe (pronounced “Sway”) from Swetown (formerly Softwareville), USA, who claims to have discovered an O(N log log N) sorting algorithm?
The Answer is No! (if using comparisons only)

✦ Recall our basic assumption: we can only compare two elements at a time – how does this limit the run time?

✦ Suppose you are given N elements
 ➔ Assume no duplicates – any sorting algorithm must also work for this case

✦ How many possible orderings can you get?
 ➔ Example: a, b, c (N = 3)
 ➔ How many distinct sequences exist?

R. Rao, CSE 326

The Answer is No! (if using comparisons only)

✦ How many possible orderings can you get?
 ➔ Example: a, b, c (N = 3)
 ➔ Orderings: 1. a b c 2. b c a 3. c a b 4. a c b 5. b a c 6. c b a
 ➔ N = 3: We have 6 orderings = 3\cdot2\cdot1 = 3!

✦ For N elements, how many possible orderings exist?
The Answer is No! (if using comparisons only)

✦ How many possible orderings can you get?
 ✗ Example: a, b, c (N = 3)
 ✗ Orderings: 1. a b c 2. b c a 3. c a b 4. a c b 5. b a c
 6. c b a
 ✗ 6 orderings = 3\cdot2\cdot1 = 3!

✦ For N elements:
 = N! orderings

A “Decision Tree” for Sorting N=3 Elements

Possible Orderings

Remaining Orderings

a < b < c, b < c < a, c < a < b, a < c < b, b < a < c, c < b < a

Leaves contain all possible orderings of a, b, c
Decision Trees and Sorting

✦ A Decision Tree is a Binary Tree such that:
 ➤ Each node = a set of orderings
 ➤ Each edge = 1 comparison
 ➤ Each leaf = 1 unique ordering
 ➤ How many leaves for N distinct elements?
✦ Only 1 leaf has correct sorted ordering for given a, b, c
✦ Each sorting algorithm corresponds to a decision tree
 ➤ Finds correct leaf by following edges (= comparisons)
✦ Run time ≥ maximum no. of comparisons
 ➤ Depends on: depth of decision tree
 ➤ What is the depth of a decision tree for N distinct elements?

Lower Bound on Comparison-Based Sorting

✦ Suppose you have a binary tree of depth d. How many leaves can the tree have?
 ➤ E.g. Depth = 1 → at most 2 leaves
 ➤ Depth = 2 → at most 4 leaves, etc.
 ➤ Depth = d → how many leaves?
Lower Bound on Comparison-Based Sorting

- A binary tree of depth d has at most 2^d leaves
 - E.g. depth $d = 1$ has 2 leaves, $d = 2$ has 4 leaves, etc.
 - Can prove by induction
- Number of leaves $L \leq 2^d$, so $d \geq \log L$
- Decision tree has $L = N!$ leaves
 - Depth $d \geq \log(N!)$
 - What is $\log(N)!$? (first, what is $\log(A \cdot B)$?)

Result: Any sorting algorithm based on comparisons between elements requires $\Omega(N \log N)$ comparisons.
Lower Bound on Comparison-Based Sorting

- Decision tree has \(L = N! \) leaves
 - Depth \(d \geq \log(N!) \)
 - What is \(\log(N!) \)? (first, what is \(\log(A \cdot B) \)?)
 - \(\log(N!) = \Omega(N \log N) \)

- **Result**: Any sorting algorithm based on comparisons between elements requires \(\Omega(N \log N) \) comparisons

- **Corollary**: Run time of any comparison-based sorting algorithm is \(\Omega(N \log N) \)
 - Can never get an \(O(N \log \log N) \) comparison-based sorting algorithm (sorry, Pat Swe!)

Hey! (you say)...what about Bucket Sort?

- **Recall**: Bucket sort
 - Elements are integers in the range 0 to B-1
 - Idea: Array \(\text{Count} \) has B slots (“buckets”)
 1. Initialize: \(\text{Count}[i] = 0 \) for \(i = 0 \) to B-1
 2. Given input integer \(i \), \(\text{Count}[i]++ \)
 3. After reading all inputs, scan \(\text{Count}[i] \) for \(i = 0 \) to B-1 and print \(i \) if \(\text{Count}[i] \) is non-zero

- **What is the running time for sorting \(N \) integers?**
What’s up with Bucket Sort?

✦ Recall: Bucket sort Elements are integers known to always be in the range 0 to B-1
✦ What is the running time for sorting N integers?
 ➢ Running Time: O(B+N)
 † B to zero/scan the array and N to read the input
 ➢ If B is $\Theta(N)$, then running time for Bucket sort = $O(N)$
 ➢ Doesn’t this violate the $\Omega(N \log N)$ lower bound result??

The Scoop behind Bucket Sort

✦ Recall: Bucket sort Elements are integers known to always be in the range 0 to B-1
✦ What is the running time for sorting N integers?
 ➢ Running Time: O(B+N)
 ➢ If B is $\Theta(N)$, then running time for Bucket sort = $O(N)$
 ➢ Doesn’t this violate the $O(N \log N)$ lower bound result??
✦ No – When we do Count[i]++, we are comparing one element with all B elements, not just two elements
 ➢ Not regular 2-way comparison-based sorting
Radix Sort = Stable Bucket Sort

- **Problem:** What if number of buckets needed is too large?
- **Recall:** Stable sort = a sort that does not change order of items with same key
- **Radix sort** = stable bucket sort on “slices” of key
 1. Divide integers/strings into digits/characters
 2. Bucket-sort from least significant to most significant digit/character
 - Uses linked lists – see Chap 3 for an example
 - Stability ensures keys already sorted stay sorted
 - Takes $O(P(B+N))$ time where $P = \text{number of digits}$

Radix Sort Example

<table>
<thead>
<tr>
<th>478</th>
<th>537</th>
<th>9</th>
<th>721</th>
<th>3</th>
<th>123</th>
<th>537</th>
<th>03</th>
<th>09</th>
<th>721</th>
<th>123</th>
<th>003</th>
<th>009</th>
<th>038</th>
<th>067</th>
<th>123</th>
<th>478</th>
<th>537</th>
<th>721</th>
</tr>
</thead>
</table>
Internal versus External Sorting

✦ So far assumed that accessing A[i] is fast – Array A is stored in internal memory (RAM)
 ⇒ Algorithms so far are good for internal sorting

✦ What if A is so large that it doesn’t fit in internal memory?
 ⇒ Data on disk or tape
 ⇒ Delay in accessing A[i]
 ♦ E.g. need to spin disk and move head

✦ Need sorting algorithms that minimize disk/tape accesses
 ⇒ Enter…External sorting

External Sorting

✦ Sorting algorithms that minimize disk/tape accesses
 ⇒ External sorting – Basic Idea:
 ♦ Load chunk of data into RAM
 ● Sort this data
 ● Store this “run” back on disk/tape
 ♦ Repeat for all data
 ♦ Then: Use the Merge routine from Mergesort to merge the sorted runs
 ♦ Repeat until you have only one run (one sorted chunk)
 ♦ Text gives some examples

✦ Waitaminute!! How relevant is external sorting?
Internal Memory is getting dirt cheap…

- Price of internal memory is dropping, memory size is increasing, both at exponential rates (Moore’s law)
- Quite likely that in the future, data will probably fit in internal memory for reasonably large input sizes
- Tapes seldom used these days – disks are faster and getting cheaper with greater capacity
- So, for most practical purposes, internal sorting algorithms such as Quicksort should prove to be sufficiently efficient
Okay…so let’s talk about practical performance

<table>
<thead>
<tr>
<th>Input Size N</th>
<th>Run time (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion sort</td>
<td>Heapsort</td>
</tr>
<tr>
<td>Shellsort</td>
<td>Quicksort</td>
</tr>
</tbody>
</table>

[Data from textbook Chap. 7]

Summary of Sorting

✦ Sorting choices:
 ➢ O(N^2) – Bubblesort, Selection Sort, Insertion Sort
 ➢ O(N^x) – Shellsort (x = 3/2, 4/3, 2, etc. depending on incr. seq.)
 ➢ O(N log N) average case running time:
 ♦ **Heapsort**: needs 2 comparisons to move data (between 2 children and parent) – may not be fast in practice (see graph)
 ♦ **Mergesort**: easy to code but uses O(N) extra space
 ♦ **Quicksort**: fastest in practice but trickier to code, O(N^2) worst case
 ➢ O(P·N) – Radix sort (using Bucket sort) for special cases where keys are P digit integers/strings
The Practical Side of Sorting

✦ Practical Choices:
 ➤ **When N is large**, use Quicksort with median-of-three pivot
 ➤ **For small N (< 20)**, N log N sorts are slower due to extra overhead (larger constants in big-oh function)
 ➤ **For N < 20**, use Insertion sort
 ➤ A Good Heuristic:
 ♦ In Quicksort, do insertion sort when sub-array size < 20 (instead of partitioning) and return this sorted sub-array for further processing
 ♦ Speeds up the running time

Next time:
Data Structures for Union and Find operations
(sorry, not the kind seen in Frat parties)

To do:
Finish chapter 7
Read chapter 8