CSE 326 Lecture 13: Much ado about Hashing

✦ Today’s munchies to munch on:
 ➤ Review of Hashing
 ➤ Collision Resolution by:
 ♦ Separate Chaining
 ♦ Open Addressing
 • Linear/Quadratic Probing
 • Double Hashing
 ♦ Rehashing
 ♦ Extendible Hashing

✦ Covered in Chapter 5 in the text

Review of Hashing: Integer Keys

✦ Idea: Store data record with its key in array slot:
 A[Hash(key)] where Hash is a hashing function.

✦ Integer Keys:
 ➤ Hash(key) = key mod TableSize
 ➤ TableSize is size of the array (preferably a prime number)
Review of Hashing: String Keys

✦ **Idea:** Store data record with its *key* in array slot: $A[\text{Hash(key)}]$ where Hash is a hashing function.

✦ **String Keys:** Treat characters as digits (e.g. use ASCII value)
 ➤ $\text{Hash(key)} = \text{StringInt(key)} \mod \text{TableSize}$
 ➤ Examples:
 * StringInt(“abc”) = $1 \cdot 27^2 + 2 \cdot 27^1 + 3 = 786$
 * StringInt(“bca”) = $2 \cdot 27^2 + 3 \cdot 27^1 + 1 = 1540$
 * StringInt(“cab”) = $3 \cdot 27^2 + 1 \cdot 27^1 + 2 = 2216$

Collisions

✦ What if two different keys hash to the same value?
 ➤ E.g. $\text{TableSize} = 17$.
 ➤ Keys 18 and 35 hash to same value: $18 \mod 17 = 1$ and $35 \mod 17 = 1$

✦ Cannot store both data records in the same slot in array!

✦ This is called a “collision”
 ➤ How can we resolve collisions during hashing?
Collision Resolution

Two different methods:

- **Separate Chaining:** Use data structure (such as a linked list) to store multiple items that hash to the same slot.
- **Open addressing (or probing):** search for other slots using a second function and store item in first empty slot that is found.

Chaining and probing???

Get me outta here!!
Separate Chaining

✦ Each hash table cell holds a pointer to a linked list of records with same hash value (i, j, k in figure)
✦ Collision: Insert item into linked list
✦ To Find an item: compute hash value, then do Find on linked list
✦ Can use List ADT for Find/Insert/Delete in linked list
✦ Can also use BSTs: O(log N) time instead of O(N). But lists are usually small – not worth the overhead of BSTs

Load Factor of a Hash Table

✦ Let N = number of items to be stored
✦ Load factor $\lambda = \frac{N}{TableSize}$
✦ Suppose $TableSize = 2$ and number of items $N = 10$
 $\Rightarrow \lambda = 5$
✦ Suppose $TableSize = 10$ and number of items $N = 2$
 $\Rightarrow \lambda = 0.2$
✦ Average length of chained list = λ
✦ Average time for accessing an item = $O(1) + O(\lambda)$
 \Rightarrow Want λ to be close to 1 (i.e. $TableSize \approx N$)
 \Rightarrow But chaining continues to work for $\lambda > 1$
Collision Resolution by **Open Addressing**

✦ Linked lists can take up a lot of space…

✦ **Open addressing (or probing):** When collision occurs, **try alternative cells** in the array until an empty cell is found

✦ Given an item X, try cells $h_0(X)$, $h_1(X)$, $h_2(X)$, …, $h_i(X)$

✦ $h_i(X) = (\text{Hash}(X) + F(i)) \mod \text{TableSize}$
 - Define $F(0) = 0$

✦ F is the collision resolution function. **Three possibilities:**
 - **Linear:** $F(i) = i$
 - **Quadratic:** $F(i) = i^2$
 - **Double Hashing:** $F(i) = i \cdot \text{Hash}_2(X)$

Open Addressing I: Linear Probing

✦ **Main Idea:** When collision occurs, **scan down the array one cell at a time** looking for an empty cell
 - $h_i(X) = (\text{Hash}(X) + i) \mod \text{TableSize}$ \(i = 0, 1, 2, \ldots\)
 - Compute hash value and increment until free cell is found

✦ **In-Class Example:** Insert \{18, 19, 20, 29, 30, 31\} into empty hash table with $\text{TableSize} = 10$ using:
 (a) separate chaining
 (b) linear probing
Load Factor Analysis of Linear Probing

- Recall: **Load factor** $\lambda = \frac{N}{TableSize}$
- Fraction of empty cells $= 1 - \lambda$
- Number of such cells we expect to probe $= \frac{1}{1 - \lambda}$
- Can show that expected number of probes for:
 - Successful searches $= O(1 + \frac{1}{1 - \lambda})$
 - Insertions and unsuccessful searches $= O(1 + \frac{1}{(1 - \lambda)^2})$
- Keep $\lambda \leq 0.5$ to keep number of probes small (between 1 and 5). (E.g. What happens when $\lambda = 0.99$)

Drawbacks of Linear Probing

- Works until array is full, but as number of items N approaches $TableSize$ ($\lambda \approx 1$), access time approaches $O(N)$
- Very prone to **cluster formation** (as in our example)
 - If key hashes into a cluster, finding free cell involves **going through the entire cluster**
 - Inserting this key at the end of cluster causes the cluster to grow: future Inserts will be even more time consuming!
 - This type of clustering is called **Primary Clustering**
- Can have cases where **table is empty except for a few clusters**
 - Does not satisfy good hash function criterion of **distributing keys uniformly**
Open Addressing II: Quadratic Probing

- Main Idea: Spread out the search for an empty slot – Increment by \(i^2\) instead of \(i\)
- \(h_i(X) = (\text{Hash}(X) + i^2) \mod \text{TableSize}\) (\(i = 0, 1, 2, \ldots\))
 - No primary clustering but secondary clustering possible
- Example 1: Insert \{18, 19, 20, 29, 30, 31\} into empty hash table with TableSize = 10
- Example 2: Insert \{1, 2, 5, 10, 17\} with TableSize = 16
 - Note: 25 mod 16 = 9, 36 mod 16 = 4, 49 mod 16 = 1, etc.
- Theorem: If TableSize is prime and \(\lambda < 0.5\), quadratic probing will always find an empty slot

Open Addressing III: Double Hashing

- Idea: Spread out the search for an empty slot by using a second hash function
 - No primary or secondary clustering
- \(h_i(X) = (\text{Hash}(X) + i \cdot \text{Hash}_2(X)) \mod \text{TableSize}\) for \(i = 0, 1, 2, \ldots\)
- E.g. \(\text{Hash}_2(X) = R - (X \mod R)\)
 - \(R\) is a prime smaller than TableSize
- Try this example: Insert \{18, 19, 20, 29, 30, 31\} into empty hash table with TableSize = 10 and \(R = 7\)
- No clustering but slower than quadratic probing due to \(\text{Hash}_2\)
The need to be lazy…

✦ Need to use lazy deletion if we use probing (why?)
 ➤ Think about how Find(X) would work…

✦ Mark array slots as “Active/Not Active”

✦ If table gets too full ($\lambda \approx 1$) or if many deletions have occurred:
 ➤ Running time for Find etc. gets too long, and
 ➤ Inserts may fail!
 ➤ What do we do?

Rehashing

✦ Rehashing – Allocate a larger hash table (of size $2*\text{TableSize}$) whenever λ exceeds a particular value

✦ How does it work?
 ➤ Cannot just copy data from old table: Bigger table has a new hash function
 ➤ Go through old hash table, ignoring items marked deleted
 ➤ Recompute hash value for each non-deleted key and put the item in new position in new table

✦ Running time = $O(N)$ but happens very infrequently
Extendible Hashing

✦ What if we have large amounts of data that can only be stored on disks and we want to find data in 1-2 disk accesses

✦ Could use B-trees but deciding which of many branches to go to takes time

✦ Extendible Hashing: Store item according to its bit pattern
 ➤ Hash(X) = first \(d_L \) bits of X
 ➤ Each leaf contains \(\leq M \) data items with \(d_L \) identical leading bits
 ➤ Root contains pointers to sorted data items in the leaves

Extendible Hashing: The details

✦ Extendible Hashing: Store data according to bit patterns
 ➤ Root is known as the directory
 ➤ M is the size of a disk block

<table>
<thead>
<tr>
<th>Directory</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0010</td>
<td>0110</td>
<td>1000</td>
<td>1110</td>
</tr>
<tr>
<td>0001</td>
<td>0101</td>
<td>1001</td>
<td>1010</td>
<td></td>
</tr>
<tr>
<td>0011</td>
<td>1110</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disk Blocks (\(M = 3 \))
Extendible Hashing: More details

✦ Extendible Hashing:
 ➔ Insert: If leaf is full, split leaf and increase directory bits by one (e.g. 000, 001, 010, etc.)
 ➔ To avoid collisions and too much splitting, would like bits to be nearly random
 ♦ Hash keys to long integers and then look at leading bits

![Hash(X) = first 2 bits of X](image)

Applications of Hashing

✦ In Compilers: Used to keep track of declared variables in source code – this hash table is known as the “Symbol Table.”

✦ In storing information associated with strings
 ➔ Example: Counting word frequencies in a text! (as in HW 3)

✦ In Game playing programs: Store the move for each position by hashing that position into a hash table
 ➔ Called the Transposition table

✦ In on-line spell checkers like this one
 ➔ Entire dictionary stored in a hash table
 ➔ Each word in text hashed – if not found, word is misspelled.
Next Class:
All sorts of Sorts

To Do:
Finish reading Chapter 5
Assignment #3 (due Thu Feb 13)
Midterm on Wed Feb 12!