Recall: Properties of B-Trees

- All keys in first subtree $T_1 < k_1$
- All keys in subtree T_i must be between k_{i-1} and k_i
 \[k_{i-1} \leq T_i < k_i \]
- All keys in last subtree $T_M \geq k_{M-1}$
Inserting Items in B-Trees

- **Insert X**: Do a Find on X and find appropriate leaf node
 - If leaf node is not full, fill in empty slot with X.

 E.g. Insert 5 in the tree below
 - If leaf node is full, split leaf node and adjust parents up to root node. E.g. Insert 9 in the tree below

```
       13:-
       /  \
      /    \
     6:11  17:-
    /      /  \
   /      /    \
  3 4: - 6 7 8 11 12 - 13 14 - 17 18 -
```

“2-3 Tree”

Deleting Items in B-Trees

- **Delete X**: Do a Find on X and delete value from leaf node
 - May have to combine leaf nodes and adjust parents up to root node if number of data items falls below \(\lceil L/2 \rceil = 2 \)

 E.g. Delete 17 in the tree below

```
       13:-
       /  \
      /    \
     6:11  17:-
    /      /  \
   /      /    \
  3 4: - 6 7 8 11 12 - 13 14 - 17 18 -
```
Run Time Analysis of B-Tree Operations

- For a B-Tree of order M
 1. Each internal node has up to \(M-1 \) keys to search
 2. Each internal node has between \(\lfloor M/2 \rfloor \) and \(M \) children
 3. Each leaf stores between \(\lfloor L/2 \rfloor \) and \(L \) data items

 Depth \(d \) of B-Tree storing \(N \) data items is:
 \[
 \log_{\lfloor M/2 \rfloor} \left(\frac{N}{L} \right) - 1 \leq d < \log_{\lfloor M/2 \rfloor} \left(\frac{N}{L} \right)
 \]
 i.e.
 \[
 d = O(\log_{\lfloor M/2 \rfloor} \left(\frac{N}{L} \right)) = O(\log N)
 \]
 (Why? Hint: Draw a B-tree with minimum children at each node. Count its leaves as a function of depth)

- **Find**: Run time includes:
 - \(O(\log M) \) to binary search which branch to take at each node

 Total time to Find an item is \(O(\text{depth} \times \log M) = O(\log N) \)

What about Insert/Delete?

- For a B-Tree of order M
 Depth of B-Tree storing \(N \) items is \(O(\log_{\lfloor M/2 \rfloor} N) \)

- **Insert and Delete**: Run time is:
 - \(O(M) \) to handle splitting or combining keys in nodes
 - Total time is \(O(\text{depth} \times M) = O((\log N / \log_{\lfloor M/2 \rfloor}) \times M) \)
 - \(= O((M / \log M) \times \log N) \)

 How do we select \(M \)?
How do we select M and L?

✦ If Tree & Data in internal (main) memory want M and L to be small to minimize search time at each node/leaf
 ➤ Typically M = 3 or 4 (e.g. M = 3 is a 2-3 tree)
 ➤ All N items stored in internal memory

✦ If Tree & Data on Disk Disk access time dominates!
 ➤ Choose M & L so that interior and leaf nodes fit on 1 disk block
 ➤ To minimize number of disk accesses, minimize tree height
 ➤ Typically M = 32 to 256, so that depth = 2 or 3 allows very fast access to data in large databases.

✦ See Textbook for more numbers and examples.

Summary of Search Trees

✦ Problem with Search Trees: Must keep tree balanced to allow fast access to stored items

✦ AVL trees: Insert/Delete operations keep tree balanced

✦ Splay trees: Sequence of operations produces balanced trees

✦ Multi-way search trees (e.g. B-Trees): More than two children per node allows shallow trees; all leaves are at the same depth keeping tree balanced at all times
A New Problem…

✦ Instead of finding any item (as in a search tree), suppose we want to find only the smallest (highest priority) item quickly. Examples:
 ➤ Operating system needs to schedule jobs according to priority
 ➤ Doctors in ER take patients according to severity of injuries
 ➤ Event simulation (bank customers arriving and departing, ordered according to when the event happened)

✦ We want an ADT that can efficiently perform:
 ➤ FindMin (or DeleteMin)
 ➤ Insert

Using the Data Structures we know…

✦ Suppose we have N items.

✦ Lists
 ➤ If sorted: DeleteMin is O(1) but Insert is O(N)
 ➤ If not sorted: Insert is O(1) but DeleteMin is O(N)

✦ Binary Search Trees (BSTs)
 ➤ Insert is O(log N) and DeleteMin is O(log N)

✦ BSTs look good but…
 ➤ BSTs designed to be efficient for Find, not just FindMin
 ➤ We only need FindMin/DeleteMin

✦ We can do better than BSTs!
 ➤ O(1) FindMin and O(log N) Insert. How?
Heaps

- A binary heap is a binary tree that is:
 1. **Complete**: the tree is completely filled except possibly the bottom level, which is filled from left to right
 2. **Satisfies the heap order property**: every node is smaller than (or equal to) its children

- Therefore, the root node is always the smallest in a heap

![Heap Diagram]

Which of these is not a heap?

Array Implementation of Heaps

- Since heaps are complete binary trees, we can avoid pointers and use an array

- Recall our Array Implementation of Binary Trees:
 - Root node = A[1]
 - Keep track of current size N (number of nodes)

![Array Implementation Diagram]
Heaps: FindMin and DeleteMin Operations

✦ **FindMin**: Easy! Return root value A[1]
 ➔ Run time = ?

✦ **DeleteMin**:
 ➔ Delete (and return) value at root node
 ➔ We now have a “Hole” at the root
 ➔ Need to fill the hole with another value
 ➔ Replace with smallest child?
 ♦ Try replacing 2 with smallest child and that node with its smallest child, and so on…what happens?

DeleteMin Take 1

✦ **DeleteMin**:
 ➔ Delete (and return) value at root node
 ➔ We now have a “Hole” at the root
 ➔ Need to fill the hole with another value
 ➔ Replace with smallest child?
 ♦ Try replacing 2 with smallest child and so on…what happens?
 ♦ *Tree is no longer complete!*
 ♦ Let’s try another strategy…
DeleteMin (Take 2)

✦ **DeleteMin:**
- Delete (and return) value at root node
- We now have a “Hole” at the root
- Need to fill hole with another value

✦ Since heap is smaller by one node, we need to **empty the last slot**

✦ **Steps:**
1. Move last item to top; decrease size by 1
2. **Percolate down** the top item to its correct position in the heap

- **Replace with smaller child and go down one level**
- Done if both children are \geq item or reached a leaf node
- What is the run time?
DeleteMin: Run Time Analysis

- Run time is $O(\text{depth of tree})$
- What is the depth of a complete binary tree of N nodes?

- Run time is $O(\text{depth of heap})$
- A heap is a complete binary tree
- What is the depth of a complete binary tree of N nodes?
 - At depth d, you can have:
 - $N = 2^d$ (one leaf at depth d) to $2^{d+1}-1$ nodes (all leaves at depth d)
 - So, depth d for a heap is: $\log N \leq d \leq \log(N+1)-1$ or $\Theta(\log N)$
- Therefore, run time of DeleteMin is $O(\log N)$
Next Class:
Up close and personal with Binomial Heaps

To Do:
Read Chapter 6
Homework # 2 (due this Friday)