Data Structures: Practice Midterm Solutions

1. Mathematical Background

 a. \(f(N) \) is \(O(g(N)) \) if there are positive constants \(c \) and \(N_0 \) such that \(f(N) \leq cg(N) \) for \(N \geq N_0 \)

 b. Show that \(373N + 100 \) is \(O(N) \) (by selecting appropriate constants \(c \) and \(N_0 \)). Here, \(f(N) = 373N + 100 \) and \(g(N) = N \). There are many different solutions. One solution: Select \(c = 374 \) and \(N_0 = 100 \). Then, \(cg(N) = 374N = 373N + N \geq 373N + 100 \) for \(N \geq 100 \)

 c. If \(T(N) \) is the run time of the following function, the following statements are true (the other two are false):

 (i) \(T(N) \) is \(O(2^N) \)

 (ii) \(T(N) \) is \(\Omega(\log N) \)

      ```
      int FunWith(N) {
        if (N == 0) return 1; /* 1 */
        else return FunWith(N-1) + FunWith(N-1); /* 2 */
      }
      ```

 Here’s why. Line 1 takes a constant amount of time \(c_0 \) (for \(N = 0 \)) and the “if…else” and “+” in line 2 takes constant time \(c \), plus the time for the two recursive calls. Therefore, the recurrence relation for \(T(N) \) is:

 \[
 T(N) = 2T(N-1) + c \\
 = 2(2T(N-2) + c) + c = 2(2(2T(N-3) + c) + c) + c = \ldots \\
 = 2^N T(N-N) + c(2^{N-1} + \ldots + 2^1 + 2^0) = 2^N c_0 + c(2^{N-1}) = \Theta(2^N)
 \]

 This is both \(O(2^N) \) and \(\Omega(\log N) \) but not \(\Theta(N) \) or \(o(2^N) \).

2. Trees and Stacks

 a. Draw the final tree that results from inserting the integers 5, 2, 4, 3, 9, 12, 6 (in that order) into an empty binary search tree with no balance conditions.

 Solution:

   ```
   5
   / \\
   2 9
   / \\
   4 6
   / \\
   3
   ```
2. What is the sequence of elements that results from a preorder traversal of your tree in part (a)?
 5 2 4 3 9 6 12

3. Binary Search Trees

 a. What is the worst case running time for the Find operation on a tree of N nodes when you use: (i) an unbalanced binary search tree, (ii) an AVL tree, and (iii) a splay tree? Select one of the following for each: $O(1)$, $O(\log N)$, $O(\sqrt{N})$, $O(N)$, $O(N \log N)$ (choose the best possible upper bound).
 Solution: (i) $O(N)$, (ii) $O(\log N)$, and (iii) $O(N)$

 b. Draw the tree that results from inserting 11 followed by 7 into the following AVL tree:

 ![AVL Tree Diagram]

 Solution:

   ```c
   void Stack_Preorder (Tree T, Stack S) {
     if (T == NULL) return; else push(T,S);
     while (!isempty(S)) {
       T = pop(S);
       print_element(T -> Element);
       if  (T -> Right != NULL) push(T -> Right, S);
       if  (T -> Left != NULL) push(T -> Left, S);
     }
   }
   ```
4. **Binary Heaps and Binomial Queues**

 a. What are the two properties that make a binary tree a binary heap?

 A binary heap is a binary tree that is:

 1. **Complete**: all levels filled except possibly the bottom level, which is filled from left to right
 2. **Satisfies the heap order property**: every node is smaller than (or equal to) its children

 b. Draw the binary heap that results from deleting the minimum and then inserting 4 into the following binary heap:
c. Draw the binomial queue that results from inserting the integers 1, 2, 3, 4, 5, 6, 7 (in that order) into an empty binomial queue and then deleting the minimum.

Solution: There are three possible solutions:

5. **Hashing**
 Consider the hash function $\text{Hash}(X) = X \mod 10$ and the ordered input sequence of keys 51, 23, 73, 99, 44, 79, 89, 38. Draw the result of inserting these keys in that order into a hash table of size 10 (cells indexed by 0, 1, ..., 9).
a. separate chaining: (Note: 1. You may also insert new elements at the beginning of the list rather than the end; 2. You may also store the first element in the array and use a linked list for the second, third, … elements)

```
   0          1          2          3          4          5          6          7          8          9
  51 X        ->  23 -> 73 X     44 X     38 X     99 X     79 X     89 X
```

b. open addressing with linear probing, where F(i) = i;

```
   0          1          2          3          4          5          6          7          8          9
   79          51          89          23          73          44          38          99          89          99
```

c. open addressing with quadratic probing, where F(i) = i².

```
   0          1          2          3          4          5          6          7          8          9
   79          51          38          23          73          44          89          99          89          99
```