CSE 326: Data Structures
Topic 8: Big, Bad B-Trees

Luke McDowell
Summer Quarter 2003

We Want To Minimize Disk Accesses!

We Want To Minimize Disk Accesses!

Disk access time = Seek time + Transfer time

\[\text{Disk access time} = \text{Seek time} + \text{Transfer time} \]

M-ary Search Tree

- Maximum branching factor of M
- Complete tree has depth \(\log_M N \)

runtime:

M-ary Search Tree

- Maximum branching factor of M
- Complete tree has depth \(\log_M N \)

runtime:

B-Trees

- B-Trees are specialized M-ary search trees
- Each node has many keys (max M-1)
 - subtree between two keys x and y contains leaves with values v such that \(x < v < y \)
 - binary search within a node to find correct subtree
- Each node takes one full \{page, block\} of memory

B-Trees

- B-Trees are specialized M-ary search trees
- Each node has many keys (max M-1)
 - subtree between two keys x and y contains leaves with values v such that \(x < v < y \)
 - binary search within a node to find correct subtree
- Each node takes one full \{page, block\} of memory

We Want To Minimize Disk Accesses!

We Want To Minimize Disk Accesses!

Disk access time = Seek time + Transfer time

\[\text{Disk access time} = \text{Seek time} + \text{Transfer time} \]

M-ary Search Tree

- Maximum branching factor of M
- Complete tree has depth \(\log_M N \)

runtime:

M-ary Search Tree

- Maximum branching factor of M
- Complete tree has depth \(\log_M N \)

runtime:

B-Trees

- B-Trees are specialized M-ary search trees
- Each node has many keys (max M-1)
 - subtree between two keys x and y contains leaves with values v such that \(x < v < y \)
 - binary search within a node to find correct subtree
- Each node takes one full \{page, block\} of memory

B-Trees

- B-Trees are specialized M-ary search trees
- Each node has many keys (max M-1)
 - subtree between two keys x and y contains leaves with values v such that \(x < v < y \)
 - binary search within a node to find correct subtree
- Each node takes one full \{page, block\} of memory

We Want To Minimize Disk Accesses!

We Want To Minimize Disk Accesses!

Disk access time = Seek time + Transfer time

\[\text{Disk access time} = \text{Seek time} + \text{Transfer time} \]

M-ary Search Tree

- Maximum branching factor of M
- Complete tree has depth \(\log_M N \)

runtime:

M-ary Search Tree

- Maximum branching factor of M
- Complete tree has depth \(\log_M N \)

runtime:

B-Trees

- B-Trees are specialized M-ary search trees
- Each node has many keys (max M-1)
 - subtree between two keys x and y contains leaves with values v such that \(x < v < y \)
 - binary search within a node to find correct subtree
- Each node takes one full \{page, block\} of memory

B-Trees

- B-Trees are specialized M-ary search trees
- Each node has many keys (max M-1)
 - subtree between two keys x and y contains leaves with values v such that \(x < v < y \)
 - binary search within a node to find correct subtree
- Each node takes one full \{page, block\} of memory
Example

B-Tree with \(M = 4 \) and \(L = 4 \)

B-Tree Properties

• Properties
 - maximum branching factor of \(M \)
 - the root has between 2 and \(M \) children or at most \(L \) keys
 - other internal nodes have between \(\lceil M/2 \rceil \) and \(M \) children
 - internal nodes contain only search keys (no data)
 - All values are stored at the leaves
 - smallest datum between search keys \(x \) and \(y \) equals \(x \)
 - each (non-root) leaf contains between \(\lceil L/2 \rceil \) and \(L \) keys
 - all leaves are at the same depth

These are technically B⁺-Trees
Example Redux

B-Tree with $M = 4$ and $L = 4$

Making a B-Tree

The empty B-Tree

Insert(3)

Insert(14)

Now, Insert(1)?

Insertions and Split Ends

Too many keys in a leaf?

Insert(59)

Insert(26)

So, split the leaf.

Insert in Boring Text

• Insert the key in its leaf
• If the leaf ends up with $L + 1$ items, overflow!
 • Split the leaf into two nodes:
 • original with $(L+1)/2$ items
 • new one with $(L+1)/2$ items
 • Add the new child to the parent
 • If the parent ends up with $M+1$ items, overflow!
• If an internal node ends up with $M+1$ items, overflow!
 • Split the node into two nodes:
 • original with $(M+1)/2$ items
 • new one with $(M+1)/2$ items
 • Add the new child to the parent
 • If the parent ends up with $M+1$ items, overflow!
• Split an overflowed root in two
 and hang the new nodes under a new root

Insert in Boring Text

This makes the tree deeper!
After More Routine Inserts

Deletion

What could go wrong?

Deletion and Adoption

A leaf has too few keys!

So, borrow from a neighbor

Deletion with Propagation

A leaf has too few keys!

And no neighbor with surplus!

But now a node has too few subtrees!

Finishing the Propagation (More Adoption)

A Bit More Adoption
Pulling out the Root

- A leaf has too few keys!
- And no neighbor with surplus!

Delete(26)

So, delete the leaf

But now the root
has just one subtree!

A node has too few subtrees
and no neighbor with surplus!

Delete the node

The root
has just one subtree!

Pulling out the Root (continued)

- Just make the one child the new root!

Deletion in Two
Boring Slides of Text

- Remove the key from its leaf
- If the leaf ends up with fewer than \(\frac{M}{2} \) items, \textit{underflow}!

 - Adopt data from a neighbor, update the parent
 - If borrowing won’t work, delete node and divide keys between neighbors
 - If the parent ends up with fewer than \(\frac{M}{2} \) items, \textit{underflow}!

Deletion Slide Two

- If a node ends up with fewer than \(\frac{M}{2} \) items, \textit{underflow}!

 - Adopt subtrees from a neighbor; update the parent
 - If borrowing won’t work, delete node and divide subtrees between neighbors
 - If the parent ends up with fewer than \(\frac{M}{2} \) items, \textit{underflow}!

- If the root ends up with only one child, make the child the new root of the tree

Why will dumping keys always work if borrowing doesn’t?

B-trees vs AVL trees

We have a database\(^*\) with 100 million items (100,000,000):

- Depth of AVL Tree
- Depth of B+ Tree with \(B = 128, \ L = 64 \)

Thinking about B-Trees

- B-Tree insertion can cause (expensive) splitting and propagation
- B-Tree deletion can cause (cheap) borrowing or (expensive) deletion and propagation
- Propagation is rare if \(M \) and \(L \) are large (Why?)
- Repeated insertions and deletion can cause thrashing
- If \(M = L = 128 \), then a B-Tree of height 4 will store at least 30,000,000 items

\(^*\) A very simple type of database, called Berkeley Database is basically a B+-tree
A Tree with Any Other Name

FYI:
- B-Trees with $M = 3$, $L = x$ are called 2-3 trees
 - Nodes can have 2 or 3 keys
- B-Trees with $M = 4$, $L = x$ are called 2-3-4 trees
 - Nodes can have 2, 3, or 4 keys

Why would we ever use these?

To Do

- Finish Homework #3
 - Don’t forget contest submission!
- Read Chapter 5