Today’s Outline

- Homework #3 Intro
- Some Tree Review
- Binary Trees
- Dictionary ADT / Search ADT
- Binary Search Trees

Tree Calculations

Find the height of the tree...

Runtime:

More Recursive Tree Calculations: Traversals

- A traversal is an order for visiting all the nodes of a tree
- Three types:
 - Pre-order
 - Root, left subtree, right subtree
 - In-order
 - Left subtree, root, right subtree
 - Post-order
 - Left subtree, right subtree, root

An expression tree

Tree Calculations Example

Binary Trees

- Binary tree is
 - a root
 - left subtree (maybe empty)
 - right subtree (maybe empty)
- For tree of depth d:
 - max # of leaves:
 - max # of nodes:
- Representation:
What We Can Do So Far

- Stack
 - Push
 - Pop
- Queue
 - Enqueue
 - Dequeue

Remember decreaseKey?

New! The Dictionary ADT

- Dictionary ADT:
 - Maps user-specified keys
 - Or a set of (key, value) pairs
 - Keys may be any (homogeneous) type
 - Values may be any (homogeneous) type
- Operations:
 - Insert (key, value)
 - Find (key)
 - Remove (key)

Also New! The Search ADT

- Search ADT:
 - Contains unique user-specified keys
 - Or a set of keys
 - Keys may be any (homogeneous) type
- Operations:
 - Insert (key)
 - Find (key)
 - Checks for membership
 - Remove (key)

A Modest Few Uses

- Arrays
- Sets
- Dictionaries
- Router tables
- Page tables
- Symbol tables
Naïve Implementations

- Unsorted Linked list
- Unsorted array
- Sorted array

What limits the performance?

Binary Search Tree

Dictionary Data Structure

- Binary tree property
 - each node has 2 children
 - result:
 - storage is small
 - operations are simple
 - average depth is small
- Search tree property
 - all keys in left subtree smaller than root’s key
 - all keys in right subtree larger than root’s key
 - result: easy to find any given key
- What must I know about what I store?

Example and Counter-Example

Finding a Node

Iterative Find

Why It’s Called a “Binary Search Tree”
BuildTree for BSTs

- Suppose the data 1, 2, 3, 4, 5, 6, 7, 8, 9 is inserted into an initially empty BST:
 - in order
 - in reverse order
 - median first, then left median, right median, etc.

Analysis of BuildTree

- Worst case: $O(n^2)$ as we’ve seen
- Average case assuming all orderings equally likely:
 - Sum of all depths:
 - $D(N) = D(I) + D(N - I - 1) + (N - 1)$
 - Average depth of a node:
 - Total runtime:

Bonus: FindMin/FindMax

- Find minimum
- Find maximum

Deletion

Why might deletion be harder than insertion?

Lazy Deletion

- Instead of physically deleting nodes, just mark them as deleted
 - simpler
 - physical deletions done in batches
 - some adds just flip deleted flag
 - extra memory for deleted flag
 - many lazy deletions slow finds
 - some operations may have to be modified (e.g., min and max)
Lazy Deletion

Deletion - Leaf Case

Deletion - One Child Case

Deletion - Two Child Case

Finally…

Thinking about Binary Search Trees

- Observations
 - Each operation views two new elements at a time
 - Elements (even siblings) may be scattered in memory
 - Binary search trees are fast if they’re shallow

- Realities
 - For large data sets, disk accesses dominate runtime
 - Some deep and some shallow BSTs exist for any data
Solutions?

- Keep BSTs shallow?
- Reduce disk accesses even for shallow tree?

To Do

- Start Homework 3
 - Find a partner
- Read chapter 4 in the book

Coming Up

- A bit more Binary Search Trees
- Self-balancing Binary Search Trees
- Huge Search Tree Data Structure