CSE 326: Data Structures
Topic #4
Putting Our Heaps Together

Luke McDowell
Summer Quarter 2003

Outline
• Finish Binary Heaps
• D-heaps
• Leftist Heaps
• Skew Heaps
• Comparing Heaps

New Operation: Merge
Given two heaps, merge them into one heap
 – first attempt: insert each element of the smaller heap into the larger.
 runtime:
 – second attempt: concatenate heaps’ arrays and run buildHeap.
 runtime:

How about $O(\log n)$ time?

Idea: Hang a New Tree

Problem?

Leftist Heaps
• Idea:
 make it so that all the work you have to do in maintaining a heap is in one small part
• Leftist heap:
 – almost all nodes are on the left
 – all the merging work is on the right
Random Definition: Null Path Length

the null path length (npl) of a node is the number of nodes between it and a null in the tree

- npl(null) = -1
- npl(leaf) = 0
- npl(single-child node) = 0

another way of looking at it: npl is the height of complete subtree rooted at this node

Leftist Heap Properties

- Heap-order property
 - parent’s priority value is ≥ to childrens’ priority values
 - result: minimum element is at the root
- Leftist property
 - null path length of left subtree is ≤ npl of right subtree
 - result: tree is at least as “heavy” on the left as the right

Are leftist trees complete? balanced?

Leftist tree examples

every subtree of a leftist tree is leftist, comrade!

Right Path in a Leftist Tree is Short (#1)

- Claim: The right path is as short as any in the tree
- Proof by contradiction:
 Shorter path: D1 < D2

 Npl(left):

 Npl(right):

Right Path in a Leftist Tree is Short (#2)

- Claim: If the right path has length at least \(r \), the tree has at least \(2^r - 1 \) nodes
- Proof by induction
 1. Base: \(r = 1 \). Tree has at least one node: \(2^1 - 1 = 1 \) node
 2. Inductive step: assume true for \(x \), prove for \(x + 1 \)
 3. Root node
 4. Left subtree: also right path of at least \(x = 1 \) \(\Rightarrow 2^x \) nodes
 5. Right subtree: at least \(x = 1 \) \(\Rightarrow 2^x \) nodes
 6. Total: \(2^x - 1 = 1 + 2^x - 1 = 1 + 2^x = 2^{x+1} - 1 \)

So, a leftist tree with at least \(n \) nodes has a right path of at most \(\log n \) nodes

Merging Two Leftist Heaps

- merge(\(T_1, T_2 \)) returns one leftist heap containing all elements of the two (distinct) leftist heaps \(T_1 \) and \(T_2 \)
Merge Continued

\[R' = \text{Merge}(R_1, T_2) \]

\[\text{npl}(R') > \text{npl}(L_1) \]

runtime:

Operations on Leftist Heaps

- merge with two trees of total size n: \(O(\log n)\)
- insert with heap size n: \(O(\log n)\)
 - pretend node is a size 1 leftist heap
 - insert by merging original heap with one node heap

- deleteMin with heap size n: \(O(\log n)\)
 - remove and return root
 - merge left and right subtrees

Merge Example

Sewing Up the Example

Finally…

Iterative Leftist Merging

downward pass: merge right paths
Iterative Leftist Merging

- upward pass: fix right path

What do we need to do this iteratively?

Random Definition: Amortized Time

Amortized time
Running time limit resulting from writing off expensive runs of an algorithm over multiple cheap runs of the algorithm, usually resulting in a lower overall running time than indicated by the worst possible case.

If M operations take total O(M log N) time, amortized time per operation is O(log N)

Difference from average time:

Skew Heaps

- Problems with leftist heaps
 - extra storage for npl
 - two pass merge (with stack!)
 - extra complexity/logic to maintain and check npl

- Solution: skew heaps
 - blind adjusting version of leftist heaps
 - amortized time for merge, insert, and deleteMin is O(log n)
 - worst case time for all three is O(n)
 - merge always switches children when fixing right path
 - iterative method has only one pass

Merging Two Skew Heaps

Skew Heap Code

```c
void merge(heap1, heap2) {
    case {
        heap1 == NULL : return heap2;
        heap2 == NULL : return heap1;
        heap1.findMin() < heap2. findMin() :
            temp = heap1.right;
            heap1.right = heap1.left;
            heap1.left = merge(heap2, temp);
            return heap1;
        otherwise :
            return merge(heap2, heap1);
    }
}
```
Comparing Heaps

- Binary Heaps
- d-Heaps
- Binomial Queues
- Leftist Heaps
- Skew Heaps

To Do

- Continue homework #2
 - Start early!
- Start chapter 4 in the book

Coming Up

- Dictionary ADT
- Self-Balancing Trees