Analysis of Algorithms

- Efficiency measure
 - how long the program runs: time complexity
 - how much memory it uses: space complexity
 - For today, we’ll focus on time complexity only

- Why analyze at all?
 - Confidence: algorithm will work well in practice
 - Insight: alternative, better algorithms

Asymptotic Analysis

- Complexity as a function of input size n
 - $T(n) = 4n + 5$
 - $T(n) = 0.5n \log n - 2n + 7$
 - $T(n) = 2^n + n^3 + 3n$

- What happens as n grows?

Why do we care?

- Most algorithms are fast for small n
 - Time difference too small to be noticeable
 - External things dominate (OS, disk I/O, …)
- BUT n is often large in practice
 - Databases, internet, graphics, …
- Time difference really shows up as n grows!

Course Policies – Updated

- Written homeworks
 - Due at the start of class on due date
 - No late homeworks accepted
- Programming homeworks
 - Turned in electronically before 11pm on due date
 - Once per quarter: use your “late day” for extra 24 hours – Must email TA
- Work in teams only on explicit team projects
 - Appropriate discussions encouraged – see website

Approximate Grading

- Weekly assignments: 35%
- Midterm: 20% Friday July 25, in class
- Final: 30% Friday Aug. 22 in class
- Best of above 3: 10%
- Participation: 5%

Written homeworks

bool ArrayFind (int array[], int n, int key)
{
 // Insert your algorithm here
}
Luke Takes a Break: Simplifying assumptions

- Ideal single-processor machine (serialized operations)
- “Standard” instruction set (load, add, store, etc.)
- All operations take 1 time unit (including, for our purposes, each Java or C++ statement)

LTaB: Analyzing Code

Basic Java/C++ operations
- Constant time
- Sum of times
Consecutive statements
- Larger branch plus test
Conditionals
- Sum of iterations
Loops
- Cost of function body
Function calls
- Solve recurrence relation
Recursive functions

LTaB: Linear Search Analysis

```c
bool ArrayFind ( int array[], int n, int key )
{
    for ( int i = 0; i < n; i++ )
    {
        // Found it!
        if ( array[i] == key )
        return true;
    }
    return false;
}
```

- Best Case:
- Worst Case:

LTaB: Binary Search Analysis

```c
bool ArrayFind ( int array[], int s, int e, int key )
{
    // The subarray is empty
    if ( s > e )
    return false;
    // Search this subarray
    int mid = (e + s) / 2;
    if ( array[key] == array[mid] )
    return true;
    else if ( key < array[mid] )
    return ArrayFind( array, s, mid-1, key );
    else
    return ArrayFind( array, mid+1, e, key );
}
```

- Best Case:
- Worst Case:

Back to work: Solving Recurrence Relations

1. Determine the recurrence relation. What are the base case(s)?
2. “Expand” the original relation to find an equivalent general expression in terms of the number of expansions.
3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case.

Linear Search vs Binary Search

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worst Case</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So… which algorithm is best? What tradeoffs did you make?
Fast Computer vs. Slow Computer

Asymptotic Analysis

• Asymptotic analysis looks at the order of the running time of the algorithm
 – A valuable tool when the input gets “large”
 – Ignores the effects of different machines or different implementations of the same algorithm

• Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
 – Linear search is \(T(n) = 2n + 1 \) \(\in O(n) \)
 – Binary search is \(T(n) = 4 \log_2 n + 2 \) \(\in O(\log n) \)

Remember: the fastest algorithm has the slowest growing function for its runtime

Order Notation: Intuition

Although not yet apparent, as \(n \) gets “sufficiently large”, \(f(n) \) will be “greater than or equal to” \(g(n) \)

Order Notation: Definition

\(O(f(n)) \) is a set of functions

\(g(n) \in O(f(n)) \) iff

There exist \(c \) and \(n_0 \) such that \(g(n) \leq c f(n) \) for all \(n \geq n_0 \)

Example:

\(100n^2 + 1000 \leq 5(n^3 + 2n^2) \) for all \(n \geq 19 \)

So \(g(n) \in O(f(n)) \)

Sometimes, you’ll see the notation \(g(n) = O(f(n)) \). This equivalent to \(g(n) \in O(f(n)) \). However, the notation \(O(f(n)) = g(n) \) is not correct
Order Notation: Example

\[100n^2 + 1000 \leq (n^2 + 2n^2) \text{ for all } n \leq 19 \]
So \(g(n) \in O(f(n)) \)

Oops: Set Notation

\[\text{“} O(f(n)) \text{ is a set of functions”} \]

Set Notation

\[1.001n + 3n^2 \in O(n^3) \]
\[45697n^3 - 4n^2 \in O(n^2) \]
\[100n^2 \log n \in O(2n^2) \]
\[1.5n - 100 \leq f(n) \text{ for all } n \]
So \(g(n) \in O(\log n) \) and \(g(n) \in O(n^{1+c}) \) (c is a constant > 0)

Big-O Common Names

- constant: \(O(1) \)
- logarithmic: \(O(\log n) \) (\(\log_k n, \log n^2 \) ? \(O(\log n) \))
- poly-log: \(O(\log^k n) \)
- linear: \(O(n) \)
- log-linear: \(O(n \log n) \)
- superlinear: \(O(n^{1+c}) \) (c is a constant > 0)
- quadratic: \(O(n^2) \)
- cubic: \(O(n^3) \)
- polynomial: \(O(n^k) \) (k is a constant)
- exponential: \(O(c^n) \) (c is a constant > 1)

Meet the Family

- \(O(f(n)) \) is the set of all functions asymptotically less than or equal to \(f(n) \)
 - \(\Omega(f(n)) \) is the set of all functions asymptotically strictly less than \(f(n) \)
- \(\omega(f(n)) \) is the set of all functions asymptotically greater than or equal to \(f(n) \)
 - \(\Omega(f(n)) \) is the set of all functions asymptotically strictly greater than \(f(n) \)
- \(\Theta(f(n)) \) is the set of all functions asymptotically equal to \(f(n) \)

Meet the Family Formally

(don’t worry about dressing up)

- \(g(n) \in O(f(n)) \) iff
 There exist \(c \) and \(n_0 \) such that \(g(n) \leq c f(n) \) for all \(n > n_0 \)
- \(g(n) \in \Omega(f(n)) \) iff
 There exist \(c \) and \(n_0 \) such that \(g(n) < c f(n) \) for all \(c > n > n_0 \)
- \(g(n) \in \omega(f(n)) \) iff
 There exist \(c \) and \(n_0 \) such that \(g(n) > c f(n) \) for all \(c > n > n_0 \)
- \(g(n) \in \Theta(f(n)) \) iff
 \(g(n) \in O(f(n)) \) and \(g(n) \in \Omega(f(n)) \)
Big-Omega et al. Intuitively

<table>
<thead>
<tr>
<th>Asymptotic Notation</th>
<th>Mathematics Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>?</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>?</td>
<td>=</td>
</tr>
<tr>
<td>o</td>
<td><</td>
</tr>
<tr>
<td>?</td>
<td>></td>
</tr>
</tbody>
</table>

True or False?

<table>
<thead>
<tr>
<th></th>
<th>10,000 n^2 + 25n ≤ (?n^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{10} n^2</td>
<td>? (?n^2)</td>
</tr>
<tr>
<td>n^2 + 4</td>
<td>? (?n^2)</td>
</tr>
<tr>
<td>n log n</td>
<td>O(2^n)</td>
</tr>
<tr>
<td>n log n</td>
<td>? (?n^2)</td>
</tr>
<tr>
<td>n^3 + 4</td>
<td>o (n^2)</td>
</tr>
</tbody>
</table>

Types of Analysis

Two orthogonal axes:

- **bound flavor**
 - upper bound (O, o)
 - lower bound (? , ?)
 - asymptotically tight (Θ)
- **analysis case**
 - worst case (adversary)
 - average case
 - best case
 - "amortized"

LTaB: Pros and Cons of Asymptotic Analysis

Proof by...

- **Counterexample**
 - show an example which does not fit with the theorem
 - QED (the theorem is disproven)
- **Contradiction**
 - assume the opposite of the theorem
 - derive a contradiction
 - QED (the theorem is proven)
- **Induction**
 - prove for a base case (e.g., n = 1)
 - assume for an anonymous value (n)
 - prove for the next value (n + 1)
 - QED

Inductive Proof of Correctness

```c
int sum(int v[], int n) {  
    if (n==0) return 0;  
    else return v[n-1]+sum(v,n-1);  
}
```

Theorem: sum(v,n) correctly returns sum of 1st n elements of array v for any n.

Basis Step: Program is correct for n=0; returns 0.

Inductive Hypothesis (n=k): Assume sum(v,k) returns sum of first k elements of v.

Inductive Step (n=k+1): sum(v,k+1) returns v[k]+sum(v,k), which is the same of the first k+1 elements of v.
Inductive Proof (Binary Search)

If you know the closed form solution, you can validate it by ordinary induction

\[T(1) = b \leq c \log 1 \leq b \quad \text{base case} \]

Assume \(T(n) \leq b + c \log n \) hypothesis

\[T(2n) = T(n) + c \leq b + c \log n \quad \text{definition of } T(n) \]

\[T(2n) = b + c \log(2n) \quad \text{by induction hypothesis} \]

\[T(2n) = b + c(\log n + 1) \]

\[T(2n) = b + c(\log n) + c \log 2 \]

\[T(2n) = b + c \log(2n) \quad \text{Q.E.D.} \]

Thus: \(T(n) \leq b + c \log n \)

Asymptotic Analysis Summary

- Determine what characterizes a problem’s size
- Express how much resources (time, memory, etc.) an algorithm requires as a function of input size using \(O(*) \), \(\Omega(*) \), \(\Theta(*) \)
 - worst case
 - best case
 - average case
 - common case
 - overall

To Do

- Continue Homework 1
 - Due Monday, June 30 at 11 PM sharp!
 - Bring questions to section tomorrow
- Sign up for 326 mailing list(s)
- Continue reading 1.1-1.3, Chapters 2 and 3 in the book
 - Also start/skim on next sections: 4.1 (introduction to trees), and sections 6.1-6.4 (priority queues and binary heaps)