CSE 326: Data Structures

Topic #10

The Dynamic (Equivalence) Duo:
Union-by-Size & Path Compression

Luke McDowell
Summer Quarter 2003

Maze Construction Algorithm

- Given:
 - A collection of rooms \(V \)
 - Connections between the rooms (initially all closed) \(E \)
- We want to build a collection of connections to knock down, \(E' \) ? \(E \), such that one unique path connects every two rooms

```plaintext
While edges remain in \( E \) {
  \( (A, B) = \text{RandomWall}() \)
  if( \( A \) and \( B \) have not been connected ) {
    Add \( (A, B) \) to \( E' \)
    Mark \( A \) and \( B \) as connected
  }
}
```

The Problem, Formally

- “If \(A \) and \(B \) have not yet been connected”
 - Are two elements in the same set?
- “Mark \(A \) and \(B \) as connected”
 - Form the union of two sets

Disjoint Sets ADT

- \(\text{Find}(x) \)
 - Returns set identifier
 - \(\text{Find}(x) = \text{Find}(y) \) iff \(x \) and \(y \) are in the same set
- \(\text{Union}(A, B) \)
 - Arguments are set identifiers
 - How do we union the sets containing \(x \) and \(y \)?
- \(\text{MakeNewSet}(\text{item}) \)
 - Create a new set containing only \(\text{item} \)

Disjoint Sets Formal Properties

- **Equivalence property**
 - Every element of a DS belongs to exactly one set
- **Dynamic equivalence property**
 - The set of an element can change after execution of a union

![Disjoint Sets Diagram]
Our Modified Maze Construction Algorithm

While edges remain in E

1. $(A, B) = \text{RemoveRandomWall}()$
2. if(Find(A) != Find(B))
 1. $E' = E' \cup (A, B)$
 2. Union(Find(A), Find(B))

Example

Construct the maze on the right

Initially (the name of each set is underlined):

$\{a\} \{b\} \{c\} \{d\} \{e\} \{f\} \{g\} \{h\} \{i\}$

Order of edges in blue

Example, continued

$\{a\} \{b\} \{c\} \{d\} \{e\} \{f\} \{g\} \{h\} \{i\}$

find(b) ? b
find(c) ? c
find(b) ? find(c) so:
 add 1 to E'
union(b, c)

Result:

Order of edges in blue

DS ADT Tree Representation

• Maintain a forest of up-trees
• Each set is a tree
• What’s the set identifier?

Find Implementation

Find(x)
 - Walk parents of x to the root

Runtime:

Union Implementation

Union(A, B)
 - Join the two trees
 - Since A and B are already the roots of a tree, this is easy!
More of the Example

union(b,e)

The Final Maze

Ooh... scary!
Such a hard maze!

Mini-Exercise

Assume union always keeps first argument as the root
1. Starting with distinct sets a,b,c,d,e,f,g
 - Union(a,c)
 - Union(b,d)
 - Union(a,e)
 - Find(c)
 - Union(e,f)
 - Union(f,a)
 - Union(b,c)
 - Find(c)
2. Must Find(c) always return the same value?
3. Could Union have done a better job?

Nifty storage trick

A forest of up-trees can easily be stored in an array.
Use hashtable to map node names to array indices

up-index:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>7</td>
</tr>
</tbody>
</table>
Implementation

```c
int Find(Object x) {
    int xID = hTable[x];
    while(up[xID] != -1) {
        xID = up[xID];
    }
    return xID;
}

void Union(int x, int y) {
    up[y] = x;
}
```

Improving Union

Could we do a better job on this union?

Union-by-size Code

```c
int Union(int x, int y) {
    // If up[x] and up[y] aren't both
    // -1, this algorithm is in trouble
    if (size[x] > size[y]) {
        up[y] = x;
        size[x] += size[y];
    } else {
        up[x] = y;
        size[y] += size[x];
    }
}
```

Union-by-Size Find Analysis

- Finds are $O(\text{max node depth})$
- All nodes start at depth 0
- Depth increases
 - Only when part of smaller tree in a union
 - Only by one (1) level at a time
 - How many times can this happen?

- ?. union runtime =

Improving Find

While we're finding e, could we do anything else?

Path Compression!

Wait - what's there to improve?
Exercise
Use union-by-size. Keep the first argument as root if there’s a tie.
How many nodes does each Find access?
1. Starting with distinct sets a,b,c,d,e,f,g
 – Union(a,c)
 – Union(b,d)
 – Union(a,e)
 – Union(g,h)
 – Find(c)
 – Union(b,h)
 – Union(e,f)
 – Union(f,a)
 – Union(b,c)
 – Find(c)
 – Find(h)
 – Find(g)
2. Modify the above to also use Path Compression. Does it help?
3. Using union-by-size, what is the worst case depth of any node? Construct a sequence of union operations that produces this for a depth of 5.

Path Compression Code

```c
int Find(Object x) {
    // x had better be in
    // the set!
    int xID = hTable[x];
    int i = xID;
    // Get the root for
    // this set
    while(up[xID] != -1) {
        xID = up[xID];
    }
    // Change the parent for
    // all nodes along the path
    while(up[i] != -1) {
        temp = up[i];
        up[i] = xID;
        i = temp;
    }
    return xID;
}
```

(New?) runtime for Find():

Interlude: A Really Slow Function

Ackermann created a really big function A(x, y) with the inverse $\uparrow(x, y)$ which is really small

How fast does $\uparrow(x, y)$ grow?

$\uparrow(x, y) = 4$ for x far larger than the number of atoms in the universe (2^{300})

\uparrow shows up in:
– Computation Geometry (surface complexity)
– Combinatorics of sequences

Complex Complexity of Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, m union and find operations on a set of n elements have worst case complexity of $O(m? n)$

For all practical purposes this is amortized constant time: $O(m)$ for m operations!

In some practical cases, one or both optimizations is unnecessary, because trees do not naturally get very deep.

Disjoint Sets ADT Summary

• Also known as Union-Find or Disjoint Set Union/Find
• Simple, efficient implementation
 – With union-by-size and path compression
• Great asymptotic bounds
• Kind of weird at first glance, but lots of applications