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The final


In class, Monday, 12/15/03, 2:30-4:20 PM

Syllabus
· Everything covered in the course

· Less emphasis on material covered before the midterm
· Less emphasis on the topics of the two guest lectures
· Closed book, closed notes!

Reading list from the textbook (for topics covered after the midterm)


· Disjoint Sets

Chapter 8

Excluding 8.6.1
· Sorting


Chapter 7

Excluding 7.4, average-case QSort anal, 7.10.4 onwards

· Graphs


Chapter 9

Excluding 9.3.3, 9.3.4, 9.4, 9.6 onwards

· Amortized analysis
Chapter 11

Excluding 11.4 onwards


· Randomized DS
10.4, 12.5

Excluding 10.4.3 and details in 10.4.1

Disjoint Set ADT


· Operations: Find(x), Union(A,B), MakeNewSet(x)


· Application to Maze construction


· Can’t have an implementation that guarantees Θ(1) worst-case time for both find() and union(); so we shoot for Θ(1) amortized-case time


· Union-find data structure: forest of up-trees, nifty array storage


· Union-by-size
(union-by-height was on homework #3; what’s a potential implementation problem with union-by-height if you also want to use path compression?)


· Path compression


· Two really slow growing functions: log* n,  inverse Ackermann’s function


· Analysis not covered in class


Sorting: (A) Comparison-based

· Worst-, best-, average-case bounds for all sorting algorithms


· Θ(n2) sorts: Insertion sort, Selection sort


· Simple to implement

· Less overhead: useful when n is small
· Worst-, best- and average-case runtime?


· Θ(n log n) sorts:


· Using data structures we have learned: Heap sort, AVL sort (or tree sort of some kind); bounds follow from data structure analysis


· Divide-and-conquer techniques: Merge sort, Quick sort
We did not prove average-case bound for Quick sort in class


· QuickSelect: Θ(n) average case for finding the kth smallest element
You proved the average-case bound in homework #3


Sorting: (B) In Θ(n) time


· Bucket sort
· Useful when the numbers are known to be in a small range, 1 to K


· Radix sort
· Break-up the rage into smaller chunks

· Sort from least significant to most significant using some stable sort


Sorting: (C) External


· Useful when too many numbers to fit in memory


· Tape model

· Stage 1: sort chunks that will fit into memory

· Stage 2: repeatedly merge, switching between tapes


Sorting: (D) Lower Bounds


· Flavors of lower bounds

1. for an algorithm or operation on a structure
2. for a problem

3. for a class of algorithms for a problem


· Bound #1: Sorting by exchanging adjacent elements: Ω(n2)


· Proof based on counting number of inversions
· If elements up to distance k can be exchanged, the bound reduces to
Ω(n2 / k) – you proved this in homework #3!


· Bound #2: Sorting by comparisons: Ω(n log n)


· Proof based on decision trees
You reviewed the proof in Quiz #5


Graphs: (A) Basics


· Kinds: (un)directed, (un)weighted, (a)cyclic, (un)connected


· Representations: Adjacency Matrix, Adjacency List


· Natural problems with applications: Eulerian path, Hamiltonian path, shortest path, minimal spanning network, strong connectivity, orderings, dependency graphs


· Traversals: DFS, BFS, Best-first, Topological sort order


Graphs: (B) Shortest path algorithms


· Problem flavors: Shortest path from s to t    vs.   SSSP    vs.   APSP


· Unweighted: BFS


· Weighted: Dijkstra’s algorithm (greedy)

· Table of known/unknown and current cost

· What more do you need to maintain to output path at the end?

· Inductive proof of correctness


· Negative-cost cycles: problem!


· Negative-cost edges but no negative-cost cycles: mentioned in Homework #3


Graphs: (C) Minimum spanning tree


· Different problem than shortest paths


· Prim’s algorithm: similar to Dijkstra’s algorithm


· Kruskal’s algorithm: uses disjoint set ADT, also greedy


Amortized analysis


· General technique


· Introduce Potential function such that actual time plus change in potential function doesn’t vary much over successive operations

· Tactual + (Potential = Tamortized

· Do a telescopic sum.  If net change in potential is non-negative, then sum of assumed amortized times is an upper bound on the sum of actual times


· Binomial Queue analysis: buildBQ(n) takes amortized time Θ(n)


· Tactual = Ci = cost of ith insert


· Potential = Ti = number of trees after the ith insert


· Skew heap analysis: merge() takes amortized time Θ(log n)


· Define heavy and light nodes


· Tactual = sum of lengths of right paths


· Potential = number of heavy nodes in the two trees


Randomized data structures


· Motivation and basics


· Difference between Expected time and Average time


· Treaps
· Combine trees and heaps
· Use random priorities for the heap part
· For Dictionary ADT

· Simple, good expected runtime behavior


· Skip lists
· Add more links to a sorted linked list

· Deterministic: Θ(log n) worst-case find() but insert() is costly!

· Randomized: Θ(log n) average-case find(), much simpler insert()

· Storage needed is only roughly twice of a linked list
Information retrieval (Ethan’s talk)


· Huge data sets


· Basic IR process


· Boolean model vs. Vector space model


· Cosine measure of distance


· Inverted index


· Basic PageRank idea: hubs and authorities


Zero-knowledge proofs and sets (Bill’s talk)

· The Prover-Verifier model


· Zero-knowledge proofs: motivation and basic idea


· Applications such as signing your identity, asking queries from a source you don’t quite trust, revealing limited information based on how much the customer pays


· Zero-knowledge Sets or Dictionaries   (keys map to values)


· Verification and proof phases


· Basics of Merkle Trees; average runtime of find() operation


Topics Covered Before the Midterm
(See Midterm Review Sheet for more details)

Introduction
· Concepts vs. Mechanisms


· All Data Structures we have seen can implement all ADTs we have seen.
However, they differ in efficiency.


· Simple ADTs: List, Stack, Queue


Algorithm Analysis

· Asymptotic complexity


· Two orthogonal axes:

1. worst-case, best-case, average-case, amortized

2. upper bound (O or o), lower bound (Ω or (),  tight bound (Θ)


· Big-Oh notation

· Proofs of correctness or complexity bounds

Priority Queue ADT
· Characterized by deleteMin() operation; usually inefficient for find(k)


· Useful for greedy applications

· Implementations include

1. Simple stuff: array, linked lists (sorted or unsorted)

2. Binary heap

3. Leftist heap

4. Skew heap

5. Binomial Queues

6. d-heap


Search ADT / Dictionary ADT
· Characterized by find(k), insert(k), delete(k)


· Useful for search based applications


· Also useful for sorting based applications unless the data structure used is a hash table like structure that doesn’t organize data using ordering information


· Implementations include


1. Simple stuff: array, linked lists (sorted or unsorted)
2. Binary Search Tree (unbalanced)

3. AVL Tree

4. Splay Tree
5. B-trees (2-3 trees, 2-3-4 trees)

6. Hash table
· Separate chaining
· Open addressing
· Rehashing: can be used with separate chaining or open addr
· Extendible hashing
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