Final Review Sheet
CSE 326: Data Structures
Autumn 2003
12/10/2003

The final

In class, Monday, 12/15/03, 2:30-4:20 PM

Syllabus
· Everything covered in the course

· Less emphasis on material covered before the midterm
· Less emphasis on the topics of the two guest lectures
· Closed book, closed notes!

Reading list from the textbook (for topics covered after the midterm)

· Disjoint Sets

Chapter 8

Excluding 8.6.1
· Sorting

Chapter 7

Excluding 7.4, average-case QSort anal, 7.10.4 onwards

· Graphs

Chapter 9

Excluding 9.3.3, 9.3.4, 9.4, 9.6 onwards

· Amortized analysis
Chapter 11

Excluding 11.4 onwards

· Randomized DS
10.4, 12.5

Excluding 10.4.3 and details in 10.4.1

Disjoint Set ADT

· Operations: Find(x), Union(A,B), MakeNewSet(x)

· Application to Maze construction

· Can’t have an implementation that guarantees Θ(1) worst-case time for both find() and union(); so we shoot for Θ(1) amortized-case time

· Union-find data structure: forest of up-trees, nifty array storage

· Union-by-size
(union-by-height was on homework #3; what’s a potential implementation problem with union-by-height if you also want to use path compression?)

· Path compression

· Two really slow growing functions: log* n, inverse Ackermann’s function

· Analysis not covered in class

Sorting: (A) Comparison-based

· Worst-, best-, average-case bounds for all sorting algorithms

· Θ(n2) sorts: Insertion sort, Selection sort

· Simple to implement

· Less overhead: useful when n is small
· Worst-, best- and average-case runtime?

· Θ(n log n) sorts:

· Using data structures we have learned: Heap sort, AVL sort (or tree sort of some kind); bounds follow from data structure analysis

· Divide-and-conquer techniques: Merge sort, Quick sort
We did not prove average-case bound for Quick sort in class

· QuickSelect: Θ(n) average case for finding the kth smallest element
You proved the average-case bound in homework #3

Sorting: (B) In Θ(n) time

· Bucket sort
· Useful when the numbers are known to be in a small range, 1 to K

· Radix sort
· Break-up the rage into smaller chunks

· Sort from least significant to most significant using some stable sort

Sorting: (C) External

· Useful when too many numbers to fit in memory

· Tape model

· Stage 1: sort chunks that will fit into memory

· Stage 2: repeatedly merge, switching between tapes

Sorting: (D) Lower Bounds

· Flavors of lower bounds

1. for an algorithm or operation on a structure
2. for a problem

3. for a class of algorithms for a problem

· Bound #1: Sorting by exchanging adjacent elements: Ω(n2)

· Proof based on counting number of inversions
· If elements up to distance k can be exchanged, the bound reduces to
Ω(n2 / k) – you proved this in homework #3!

· Bound #2: Sorting by comparisons: Ω(n log n)

· Proof based on decision trees
You reviewed the proof in Quiz #5

Graphs: (A) Basics

· Kinds: (un)directed, (un)weighted, (a)cyclic, (un)connected

· Representations: Adjacency Matrix, Adjacency List

· Natural problems with applications: Eulerian path, Hamiltonian path, shortest path, minimal spanning network, strong connectivity, orderings, dependency graphs

· Traversals: DFS, BFS, Best-first, Topological sort order

Graphs: (B) Shortest path algorithms

· Problem flavors: Shortest path from s to t vs. SSSP vs. APSP

· Unweighted: BFS

· Weighted: Dijkstra’s algorithm (greedy)

· Table of known/unknown and current cost

· What more do you need to maintain to output path at the end?

· Inductive proof of correctness

· Negative-cost cycles: problem!

· Negative-cost edges but no negative-cost cycles: mentioned in Homework #3

Graphs: (C) Minimum spanning tree

· Different problem than shortest paths

· Prim’s algorithm: similar to Dijkstra’s algorithm

· Kruskal’s algorithm: uses disjoint set ADT, also greedy

Amortized analysis

· General technique

· Introduce Potential function such that actual time plus change in potential function doesn’t vary much over successive operations

· Tactual + (Potential = Tamortized

· Do a telescopic sum. If net change in potential is non-negative, then sum of assumed amortized times is an upper bound on the sum of actual times

· Binomial Queue analysis: buildBQ(n) takes amortized time Θ(n)

· Tactual = Ci = cost of ith insert

· Potential = Ti = number of trees after the ith insert

· Skew heap analysis: merge() takes amortized time Θ(log n)

· Define heavy and light nodes

· Tactual = sum of lengths of right paths

· Potential = number of heavy nodes in the two trees

Randomized data structures

· Motivation and basics

· Difference between Expected time and Average time

· Treaps
· Combine trees and heaps
· Use random priorities for the heap part
· For Dictionary ADT

· Simple, good expected runtime behavior

· Skip lists
· Add more links to a sorted linked list

· Deterministic: Θ(log n) worst-case find() but insert() is costly!

· Randomized: Θ(log n) average-case find(), much simpler insert()

· Storage needed is only roughly twice of a linked list
Information retrieval (Ethan’s talk)

· Huge data sets

· Basic IR process

· Boolean model vs. Vector space model

· Cosine measure of distance

· Inverted index

· Basic PageRank idea: hubs and authorities

Zero-knowledge proofs and sets (Bill’s talk)

· The Prover-Verifier model

· Zero-knowledge proofs: motivation and basic idea

· Applications such as signing your identity, asking queries from a source you don’t quite trust, revealing limited information based on how much the customer pays

· Zero-knowledge Sets or Dictionaries (keys map to values)

· Verification and proof phases

· Basics of Merkle Trees; average runtime of find() operation

Topics Covered Before the Midterm
(See Midterm Review Sheet for more details)

Introduction
· Concepts vs. Mechanisms

· All Data Structures we have seen can implement all ADTs we have seen.
However, they differ in efficiency.

· Simple ADTs: List, Stack, Queue

Algorithm Analysis

· Asymptotic complexity

· Two orthogonal axes:

1. worst-case, best-case, average-case, amortized

2. upper bound (O or o), lower bound (Ω or (), tight bound (Θ)

· Big-Oh notation

· Proofs of correctness or complexity bounds

Priority Queue ADT
· Characterized by deleteMin() operation; usually inefficient for find(k)

· Useful for greedy applications

· Implementations include

1. Simple stuff: array, linked lists (sorted or unsorted)

2. Binary heap

3. Leftist heap

4. Skew heap

5. Binomial Queues

6. d-heap

Search ADT / Dictionary ADT
· Characterized by find(k), insert(k), delete(k)

· Useful for search based applications

· Also useful for sorting based applications unless the data structure used is a hash table like structure that doesn’t organize data using ordering information

· Implementations include

1. Simple stuff: array, linked lists (sorted or unsorted)
2. Binary Search Tree (unbalanced)

3. AVL Tree

4. Splay Tree
5. B-trees (2-3 trees, 2-3-4 trees)

6. Hash table
· Separate chaining
· Open addressing
· Rehashing: can be used with separate chaining or open addr
· Extendible hashing

Page 1 of 8

