Introduction to Information Retrieval

Ethan Phelps-Goodman

Some slides taken from http://www.cs.utexas.edu/users/mooney/ir-course/

Information Retrieval (IR)

- The indexing and retrieval of textual documents.
- Searching for pages on the World Wide Web is the most recent “killer app.”
- Concerned firstly with retrieving relevant documents to a query.
- Concerned secondly with retrieving from large sets of documents efficiently.

Why do we need IR?

- 3 billion documents indexed in Google
- 10-20 Terabytes of text on web
- ~1000 Terabytes of information (digital & non-digital) produced every year. (http://www.ams.berkeley.edu/research/projects/how-much-info/)
- Personal information: 20 emails/day. 200 emails/day?

Lecture Overview

- Theoretical Models of IR
- Data structures for efficient implementation
- IR for web

Basics of an IR system

- What is a document?
 - “Bag of words” model. Same as project 3.
 - Problems:
 - Much more complicated systems imaginable

IR System
Boolean Model

- Query terms and boolean operators AND, OR, NOT
 - (cat OR dog) AND (collar OR leash)
- Pros
- Cons

Vector space model

- Think of a document as a vector in a space.
- One dimension for each word, so huge dimension space.
- The similarity of two documents (or a document and a query) can be thought of as the distance between the vectors in the space.

Example

- Doc1 = “See Spot run.”
- Doc2 = “Run spot, run.”
- 3 dimensions: run, spot, and see
- Doc1 \{1, 1, 1\}
- Doc2 \{1, 1, 0\}
- For now assume each entry is 1 if word appears in document and 0 otherwise

Vector-based representation

Similarity

- How could we define similarity?
 - Euclidean distance, Manhattan distance, word overlap, plenty more.
 - Inner product measure is common:

 \[x \cdot y = \sum x_i \cdot y_i \]

Problems w/ inner product

- This similarity metric just counts number of words in common with query.
- What does this leave out? What went wrong with your document correlator?
Weighting continued

- How often does a term occur?
 - Weight each term by its frequency in document.
- How common is term in collection.
 - Weight by inverse document frequency.
- How big is document?
 - Divide inner product by document size.

Cosine Measure

- tf*idf weighting is standard:
 \[w_i = tf_i \cdot idf \]
 \[tf = \# \text{ of times word occurs in document} \]
 \[idf = \log \left(\frac{\# \text{ documents in collection}}{\# \text{ documents containing word}} \right) \]

- Similarity metric is:
 \[x \cdot y = \sum \frac{x_i \cdot y_i}{|x| \cdot |y|} \]

Implementation

- Model says: given query, go out and compute similarity on all document vectors.
- Problems?

Sparse Vectors

- Vocabulary and therefore dimensionality of vectors can be very large, \(\sim 10^4 \).
- However, most documents and queries do not contain most words, so vectors are sparse (i.e. most entries are 0).
- Need efficient methods for storing and computing with sparse vectors.

Ideas?

Inverted Files

- An inverted file is just a dictionary ADT that maps from words to documents containing that word.
Inverted Index

<table>
<thead>
<tr>
<th>Index terms</th>
<th>df</th>
<th>Postings list</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer</td>
<td>3</td>
<td>$D_1, 4$</td>
</tr>
<tr>
<td>database</td>
<td>2</td>
<td>$D_2, 3$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>science</td>
<td>4</td>
<td>$D_4, 4$</td>
</tr>
<tr>
<td>system</td>
<td>1</td>
<td>$D_5, 2$</td>
</tr>
</tbody>
</table>

Retrieval with an Inverted Index

- Tokens that are not in both the query and the document do not effect cosine similarity.
 - Product of token weights is zero and does not contribute to the dot product.
- Usually the query is fairly short, and therefore its vector is extremely sparse.
- Use inverted index to find the limited set of documents that contain at least one of the query words.

Inverted Query Retrieval Efficiency

- Assume that, on average, a query word appears in B documents:

 $Q = q_1 \cdots q_k \in D_{1,a} \cdots D_{k,a}$

- Then retrieval time is $O(|Q| B)$, which is typically, much better than naïve retrieval that examines all N documents, $O(|V| N)$, because $|Q| << |V|$ and $B << N$.

IR for World Wide Web

- Lots of challenges:
 - Heterogeneous data—many formats, media types, languages
 - Very little structure known a priori
 - Constantly changing
 - Demanding users: average query is 2.4 words long, and users expect desired page to be at top of list
 - Huge amount of data:
 - 320 million pages in '98
 - 800 million pages in '99
 - 3 billion indexed by Google in 2003
 - Appears to be growing exponentially!

Handling that much data

- A mixture of:
 - Duplicate data over many machines to balance load
 - Split inverted file into sections and assign machines to sections
 - Assign popular sections to larger cluster of machines

Spiders

- How do we collect pages to index?
- Web is just a graph
 - Each URL is a vertex
 - Each hyperlink is an outgoing edge
- So start with some set of known sites, and expand out from there.
Basic crawling algorithm

• Start with a set of known sites
• While there are pages left in the queue:
 – Retrieve a page.
 – If page hasn’t been seen yet,
 • Index page
 • Extract links from page and add to queue

Updating index

• Index must be continually updated.
• Which pages to update?
 – Keep track of popularity of pages. Refresh popular pages more often.
 – Update pages that change often:
 • Periodically check pages for changes.
 • Keep a history of how often pages change.
 • Refresh more dynamic pages more often.

Standard Web Search Engine Architecture

What do people search for on the web?

50,000 queries from excite 1997

Most frequent terms:

- 4660 sex
- 3129 yahoo
- 2191 internal site admin check from kho
- 1520 chat
- 1498 porn
- 1315 horoscopes
- 1284 pokemon
- 1283 SiteScope test
- 1223 hotmail
- 1163 games
- 1151 mp3
- 1140 weather
- 1127 www.yahoo.com
- 1110 maps
- 1036 yahoo.com
- 983 ebay
- 980 recipes

PageRank

• Practically any query will return thousands or millions of documents on the web.
• Users typically don’t have a particular page they’re looking for. The just want the “best” page on the topic.
• “Best” doesn’t just mean similar terms:
 – Users want sites that are reliable and informative—sites that are “authorities” on the subject

Web Popularity Contest

• Some pages are authorities
• Some pages are hubs
• Authorities are pointed to by lots of good pages.
• Hubs point to lots of good pages.
• Many exact definitions and algorithms. We’ll look at a simple version of Google’s PageRank algorithm.
Page Rank

• Using the in-degree of a page gives a measure of popularity.
• But not all links are equal. A link from a highly ranked page counts for more than a link from a lowly ranked page.
• The rank of a page is based on the sum of the ranks of the pages that point to it:
 \[
 \text{rank}(p) = c \sum_{b \rightarrow p} \frac{\text{rank}(b)}{\text{out-degree}(b)}
 \]

Initial PageRank Idea

• Using the in-degree of a page gives a measure of popularity.
• But not all links are equal. A link from a highly ranked page counts for more than a link from a lowly ranked page.
• Initial page rank equation for page \(p \):
 \[
 R(p) = c \sum_{q \rightarrow p} \frac{R(q)}{N_q}
 \]
 - \(N_q \) is the total number of out-links from page \(q \).
 - A page, \(q \), "gives" an equal fraction of its authority to all the pages it points to (e.g. \(p \)).
 - \(c \) is a normalizing constant set so that the rank of all pages always sums to 1.

Initial Algorithm

• Iterate rank-flowing process until convergence:
 Let \(S \) be the total set of pages.
 Initialize \(\forall p \in S: R(p) = 1/|S| \)
 Until ranks do not change (much) (convergence)
 For each \(p \in S \):
 \[
 R'(p) = c \sum_{q \rightarrow p} \frac{R(q)}{N_q}
 \]
 \[
 c = 1/\sum_{p \in S} R'(p)
 \]
 For each \(p \in S \): \(R(p) = cR'(p) \) (normalize)

Problem with Initial Idea

• A group of pages that only point to themselves but are pointed to by other pages act as a “rank sink” and absorb all the rank in the system.

Rank Source

• Introduce a “rank source” \(E \) that continually replenishes the rank of each page, \(p \), by a fixed amount \(E(p) \).
 \[
 R(p) = c \left(\sum_{q \rightarrow p} \frac{R(q)}{N_q} + E(p) \right)
 \]
Random Surfer Model
• PageRank can be seen as modeling a “random surfer” that starts on a random page and then at each point:
 – With probability $E(p)$ randomly jumps to page p.
 – Otherwise, randomly follows a link on the current page.
• $R(p)$ models the probability that this random surfer will be on page p at any given time.
• “E jumps” are needed to prevent the random surfer from getting “trapped” in web sinks with no outgoing links.

Speed of Convergence
• Early experiments on Google used 322 million links.
• PageRank algorithm converged (within small tolerance) in about 52 iterations.
• Number of iterations required for convergence is empirically $O(\log n)$ (where n is the number of links).
• Therefore calculation is quite efficient.

Simple Title Search with PageRank
• Use simple Boolean search to search web-page titles and rank the retrieved pages by their PageRank.
• Sample search for “university”:
 – AltaVista returned a random set of pages with “university” in the title (seemed to prefer short URLs).
 – Primitive Google returned the home pages of top universities.

Google Ranking
• Complete Google ranking includes (based on university publications prior to commercialization).
 – Vector-space similarity component.
 – Keyword proximity component.
 – HTML-tag weight component (e.g. title preference).
 – PageRank component.
• Details of current commercial ranking functions are trade secrets.

Google PageRank-Biased Spidering
• Use PageRank to direct (focus) a spider on “important” pages.
• Compute page-rank using the current set of crawled pages.
• Order the spider’s search queue based on current estimated PageRank.

Link Analysis Conclusions
• Link analysis uses information about the structure of the web graph to aid search.
• It is one of the major innovations in web search.
• It is the primary reason for Google’s success.
• IR is getting more and more important
• Lots of interesting theoretical questions.
• Lots of interesting engineering questions.
• Also lots of interesting human related questions.