
1

CSE 326: Data Structures

Topic #17:

Randomized Data Structures:
Simpler Alternatives to Balanced BSTs

Ashish Sabharwal

Autumn, 2003

2

Today’s Outline
• Admin

– Final on Monday, Dec 15, 2:30-4:20 pm, in class

– Guest lectures

• Motivation for randomization
[Section 10.4, Introduction]

• Two randomized data structures

– Treaps [Section 12.5]

– Randomized Skip Lists [Section 10.4.2]

3

• Syllabus for the final:
– Everything from day 1, including guest lectures!
– More emphasis on material after midterm

• Friday guest lecture:
– Our very own Ethan-Phelps Goodman
– Information Retrieval, the way

• Monday guest lecture:
– William Penteney, CSE grad student
– Zero-knowledge Data Structures

Before we begin…

4

The Problem with
Deterministic Data Structures

We’ve seen many data structures with good average
caseperformance on random inputs, but bad
behavior on specific inputs

We define the average case runtime over all possible
inputs I of size n as:

Average-case T(n) = (
�

T(I)) / numPossInputs
I

We define the worst case runtime over all possible
inputs I of size n as:

Worst-case T(n) = max T(I)
I

5

Something in-between:
Randomization

Instead of randomizing the input (since we
cannot!), randomize the data structure
– No bad inputs, just unlucky random numbers

– Expected good behavior on every input

Randomized data structure: a data structure
whose behavior is dependant on a sequence S
of random numbers
– Runtime of operation on input I is T(I,S)

6

Note: compare this with definitions of
worst-case T(n) and average-case T(n)

Worst-case expected time
Definition:

– Worst-case expected time is the weighted sum of all possible
runtimeson input I over some probability distribution on S

Thus, for some particular input I, we expect the runtime to be

Expected T(I) = � (Pr(S) * T(I, S))
S

And the worst-case expected runtime of a randomized data
structure is:

Expected T(n) = max (� (Pr(S) * T(I, S)))
I S

2

7

What’s the Difference?

• Randomized with good expected time
– Once in a while you will have an expensive operation, but

no inputs can make this happen all the time

• Deterministic with good average time
– If your application happens to always use the “bad” case,

you are in big trouble!

• Expected time is kind of
like an insurance policy
for your algorithm!

8

Comparing Different
Upper Bound Analyses

Best-case � Average-Case � Amortized � Worst-case

“Worst-case expected time?”

This lecture: “Worst-case expected time” = “Expected time”

9

#1: Treap Data Structure for the
Dictionary ADT

Treaps:
– Have the binary tree

structure property

– Have the BST order
property on keys

– Have the heap order
property on randomly
assigned priorities

15
12

10
30

9
15

7
8

4
18

6
7

2
9

heap in yellow; search tree in blue

priority
key

Legend:

10

Treap Insert
• Choose a random priority

• Insert as in normal BST

• Rotate up using single rotations until heap order is restored
(maintaining BST property while rotating)

insert(15)

6
7

7
8

2
9

14
12

9
15

Runtime?

11

Tree + Heap… Why Bother?

Insert data in sorted order into a treap: 7, 8, 9, 12

What shape tree comes out?

6
7

insert(7,6)

6
7

insert(8,7)

7
8

6
7

insert(9,2)

7
8

2
9

6
7

insert(12,15)

7
8

2
9

15
12

priority
key

Legend:

12

Treap Shape

• Fix n distinct keys
– What shape can a BST with these keys take?

What does it depend on?

– How about a balanced BST?

– How about a Treap when n distinct priorities are
chosen?

3

13

Treap Delete?

14

Treap Summary

Implements Dictionary ADT
– Insert in expected �(log n) time

– Delete in expected �(log n) time

– Find in expected �(log n) time

– But worst case �(n)

Memory use
– �(1) per node

– About the cost of AVL trees

Very simple to implement, little overhead
– Less than AVL trees; only single rotations; no npl stuff

15

#2a: Perfect Skip List

• Sorted linked list
• # of links of a node is its height
• The height i link of a node (if it exists) links to the

next node of height i or greater, at distance 2i-1

• Result: There are1/2 as many height i+1 nodes as
height i nodes

8

2

11

10

1913 20

22

2923

16

Find() in a Perfect Skip List

• Start i at the maximum height

• Until the node is found, or i =1 and the next
node is too large:
– If the key in the next node along the i link is less

than the target, traverse to the next node

– Otherwise, decrease i by one

Runtime?

17

Insert() in a Perfect Skip List

18

Let’s Simplify Life:
Randomized Skip List

• It’s far too hard to insert into a perfect skip list

• But is perfection necessary?

• What matters in a skip list?

4

19

#2b: Randomized Skip List

• Sorted linked list
• # of links of a node is its height
• The height i link of a node (if it exists) links to the

next node of height i or greater, at whatever distance
• Need: There should be about 1/2 as many height

i+1 nodes as height i nodes

2 19 23

8

13

292010

22

11

20

Find() in a RSL?

Runtime?

21

Insert() in a RSL

1. Flip a coin until it comes up heads
• This will take i flips. Make the new node’s height I

� Pr[height is i] = 1/2i

� Expected # nodes of height i+1 = ½ # nodes of height i

2. Do a find, remembering nodes where we moved
down one link

3. Add the new node at the spot where the find ends
4. Point all the nodes where we moved down (up to the

new node’s height) at the new node
5. Point the new node’s links where those redirected

pointers were pointing

RSL Insert Example

2 19 23

8

13

292010 11

insert(22)
with 3 flips

2 19 23

8

13

292010

22

11

Runtime?

23

Randomized Skip List: Summary

• Implements Dictionary ADT
– Insert in expected �(log n)
– Find in expected �(log n)
– But worst case �(n)

• Memory use
– �(1) memory per node
– About double a linked list

• About as efficient as balanced search trees
(even better for some operations)
But much easier to implement!

24

To Do

• Homework #3 due Friday!

• Read section 10.4 (introduction and 10.4.2)

• Read section 12.5

