CSE 326: Data Structures

Topic #17:

Randomized Data Structures: Simpler Alternatives to Balanced BSTs

> Ashish Sabharwal Autumn, 2003

Today's Outline

- Admin
 - Final on Monday, Dec 15, 2:30-4:20 pm, in class
 - Guest lectures
- Motivation for randomization [Section 10.4, Introduction]
- Two randomized data structures
 - Treaps [Section 12.5]
 - Randomized Skip Lists [Section 10.4.2]

Before we begin...

- Syllabus for the final:
 - Everything from day 1, including guest lectures!
 More emphasis on material *after* midterm
- Friday guest lecture:
 - Our very own Ethan-Phelps Goodman
 - Information Retrieval, the Google way
- · Monday guest lecture:
 - William Penteney, CSE grad student
 - Zero-knowledge Data Structures

The Problem with Deterministic Data Structures

We've seen many data structures with good average case performance on random inputs, but bad behavior on specific inputs

We define the *worst case* runtime over all possible inputs *I* of size *n* as: Worst-case $T(n) = \max T(I)$

We define the *average case* runtime over all possible inputs *I* of size *n* as:

Average-case $T(n) = (\sum_{I} T(I)) / numPossInputs$

Something in-between: Randomization

Instead of randomizing the input (since we cannot!), randomize the data structure

- No bad inputs, just unlucky random numbers
- Expected good behavior on every input

Randomized data structure: a data structure whose behavior is dependant on a sequence *S* of random numbers

- Runtime of operation on input I is T(I,S)

Worst-case expected time

Definition:

- *Worst-case expected time* is the *weighted sum* of all possible runtimes on input *I* over some probability distribution on *S*

Thus, for *some particular* input *I*, we expect the runtime to be Expected $T(I) = \sum (Pr(S) * T(I, S))$

And the *worst-case expected* runtime of a *randomized* data structure is:

Expected T(n) = max (\sum_{I} (Pr(S) * T(I, S)))

Note: compare this with definitions of worst-case T(n) and average-case T(n)

- Start *i* at the maximum height
 Until the node is found or *i*-1 and
- Until the node is found, or *i* =1 and the next node is too large:
 - If the key in the next node along the *i* link is less than the target, traverse to the next node
 - Otherwise, decrease i by one

Runtime?

Let's Simplify Life: *Randomized* Skip List

- It's far too hard to insert into a perfect skip list
- But is perfection necessary?
- What matters in a skip list?

Insert() in a RSL

- Flip a coin until it comes up heads
 This will take *i* flips. Make the new node's head to be a set of the new node's head to be a set of the new node.
 - This will take *i* flips. Make the new node's height *I* ⇒ Pr[height is *i*] = 1/2ⁱ
 ⇒ Expected # nodes of height *i*+1 = ½ # nodes of height *i*
- 2. Do a find, remembering nodes where we moved down one link
- 3. Add the new node at the spot where the find ends
- 4. Point all the nodes where we moved down (up to the new node's height) at the new node
- 5. Point the new node's links where those redirected pointers were pointing

21

23

Randomized Skip List: Summary

- Implements Dictionary ADT
 - Insert in expected $\Theta(\log n)$
 - Find in expected $\Theta(\log n)$
 - But worst case $\Theta(n)$
- Memory use
 - $-\Theta(1)$ memory per node
 - About double a linked list
- About as efficient as balanced search trees (even better for some operations) But **much** easier to implement!

To Do

- Homework #3 due Friday!
- Read section 10.4 (introduction and 10.4.2)
- Read section 12.5