CSE 326: Data Structures

Topic #13: Sorting Lower Bounds and Breaking the $\Omega(n \log n)$ Barrier

Ashish Sabharwal
Autumn, 2003

Today’s Outline

- Thanks for the feedback!
- Finish QuickSort, QuickSelect
- Lower Bounds
 - general flavor
 - for sorting
- Breaking the barrier: BucketSort, RadixSort

Feedback Summary

Things going well
- pace of lectures
- tablet PC stuff
- group quizzes, midterm review

Issues
- pace of lectures
- tablet PC stuff
- quiz section coordination with lecture / other Q.S.
- PS slides vs. PDF slides

Lower Bounds:
for An Algorithm

Algorithm A has a lower bound $\Omega(T(n))$ if there exists an input of size n on which A takes $\Omega(T(n))$ time.

E.g.
- insertion in Binary Heap has lower bound $\Omega(\log n)$ because inserting a very small element requires $\Omega(\log n)$ percolateUp operations.
- Insertion Sort has lower bound $\Omega(n^2)$ because it needs so many operations when input is reverse sorted

Lower Bounds:
for A Problem

Problem P has a lower bound $\Omega(T(n))$ if for every algorithm A that solves P, there exists an input of size n on which A takes $\Omega(T(n))$ time.

- Very hard to prove because they must hold for any algorithm to solve P !!!
- Strategy: restrict computational model
 - Turing machines: very general, no lower bounds known
 - Circuits with and, or, not gates: more structured, still hard
 - Circuits w/o any not gates : know non-trivial bounds
 - Proof systems : the area I work in
 - ...

Lower Bounds:
for Classes of Algorithms

Problem P has a lower bound $\Omega(T(n))$ under class C if for every algorithm $A \in C$ that solves P, there exists an input of size n on which A takes $\Omega(T(n))$ time.

Still quite hard, but feasible. E.g.

- Sorting using only comparisons: $\Omega(n \log n)$
 - Applies to insertion sort, selection sort, bubble sort, shell sort, merge sort, quick sort, heap sort, tree sort, and any other sorting algorithm based only on comparisons!
- Sorting by only exchanging adjacent elements: $\Omega(n^2)$
 - Average-case; applies to insertion sort, selection sort, bubble sort, and any other sorting algorithm satisfying the criterion!
Lower Bound #1

Theorem: Any algorithm that sorts by comparing and exchanging only adjacent elements must take $\Omega(n^2)$ time on average.

Proof idea:
• Count the average number of inversions in an array
• Argue that each exchange of adjacent elements can fix only one inversion
 – Gives $\Omega(n^2)$ average-case lower bound for insertion sort, selection sort, bubble sort, and any other sorting algorithm that satisfies the criterion!

Lower Bound #2

Theorem: Any algorithm that sorts by only comparing elements must take $\Omega(n \log n)$ time in the worst case.

Proof idea:
• Represent given algorithm as a decision tree
• Argue that decision tree must have depth $\Omega(n \log n)$
• Conclude that algorithm must take so much time
 – Gives $\Omega(n \log n)$ worst-case lower bound for all sorting algorithms we have seen, and any others that satisfy the criterion!

BucketSort (aka BinSort)

If all values to be sorted are known to be between 1 and K, create an array `count` of size K, increment counts while traversing the input, and finally output the result.

Example $K=5$. Input = (5, 1, 3, 4, 3, 2, 1, 1, 5, 4, 5)

| count array |
|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 |

Running time?

BucketSort Complexity: $\Theta(n+K)$

• Case 1: K is a constant
 – BinSort is linear time
• Case 2: K is variable
 – Not simply linear time
 – Could even be worst than quadratic!
• Case 3: K is constant but large (e.g. 2^{32})
 – ???

Digression: Stable Sorting

• Stable Sorting algorithm
 – Items in input with the same value end up in the same order as when they began.

• Are the following stable:
 – BucketSort?
 – MergeSort?
 – QuickSort?

Fixing impracticality: RadixSort

• Radix = “The base of a number system”
 – We’ll use 10 for convenience, but could be anything

• Idea: BucketSort on each digit, least significant to most significant (lsd to msd)
RadixSort – magic!
• Input: 126, 328, 636, 341, 416, 131, 328

Not magic… it provably works
Claim: after \(i\)th BucketSort, \(i\) lsd’s are sorted.
– e.g. \(K=10\), \(i=3\), values 1776 and 8234:
\(8234\) comes before 1776 after the 3rd pass.
Proof: By induction. (left as an exercise)

Time to play at home…
• RadixSort the following values using \(K=10\):
 95, 3, 927, 187, 604, 823, 805, 422, 159, 98, 123,
 3, 987, 125.
• Given arbitrary numbers \(A_1, A_2, \ldots A_n\), and a base \(K\), what is the overall running time of radix sort?

Radixsort: Complexity
• How many passes?
• How much work per pass?
• Total time?
• Conclusion?
• In practice
 – RadixSort only good for large number of elements with relatively small values
 – Hard on the cache compared to MergeSort/QuickSort

What data types can you RadixSort?
• Any type \(T\) that can be BucketSorted
• Any type \(T\) that can be broken into parts \(A\) and \(B\) such that
 – You can reconstruct \(T\) from \(A\) and \(B\)
 – \(A\) can be RadixSorted
 – \(B\) can be RadixSorted
 – \(A\) is always more significant than \(B\), in ordering
Radix Sorting Numbers

- 1-digit numbers can be BucketSorted
- 2 to 5-digit numbers can be BucketSorted without using too much memory
- 6-digit numbers, broken up into A=first 3 digits, B=last 3 digits, can be RadixSorted
 - A and B can reconstruct original 6-digits
 - A and B are both RadixSortable as above
 - A always more significant than B

Radix Sorting Strings

- 1 character can be BucketSorted
- A few characters can be BucketSorted
- Break larger strings into characters or groups of characters
 - e.g. break names into last name, first name;
 sort on first name, then sort (stably) on last name

To Do

- Keep working on Project #3
- Finish reading Chapter 7
 (don’t spend too much time on External Sorting)