CSE 326: Data Structures

Topic #8: Big, Bad B-Trees

Ashish Sabharwal
Autumn, 2003

Today’s Outline

• Admin:
 – Project 2, Phase B code will be ready by 6:00 pm tonight
 – Due next Monday!
 – “In-progress” checking due this Wed night
 – Remember: README constitutes 30% of project grade
 – Use class email list – ask, answer, share knowledge!

• Finish talking about project 2
 • B-Trees

Something We Forgot: Disk Acesses

We Want To Minimize Disk Acesses!

1024 bytes

• Entire blocks transferred into memory at a time
• Transfer time much less than seek time
• Therefore we need to minimize disk accesses!

M-ary Search Tree

• Maximum branching factor of M
• Complete tree has height =

disk accesses for find:

Runtime of find:

M-ary Search Tree

Subject GRE analogy question:

M-ary Trees are to AVL Trees as ___________ are to ___________

• Same motivation
• Same idea
• But …
Problems with M-ary Search Trees

1.
2.
3.

Solution: B-Trees

• B-Trees are specialized M-ary search trees

• Each node has many keys (max $M-1$)

 - subtree between two keys x and y contains leaves with values v such that $x \leq v < y$

 - binary search within a node to find correct subtree

• Each node takes one full page, block of memory

So what's new here?

B-Trees

What makes them disk-friendly?

1. Many keys stored in a node
 - All brought to memory/cache in one access!

2. Internal nodes contain only keys;
 Only leaf nodes contain keys and actual data
 - The tree structure can be loaded into memory irrespective of data object size
 - Data actually resides in disk

B-Tree: Example

B-Tree with $M = 4$ (# pointers in internal node) and $L = 4$ (# data items in leaf)

Note: All leaves at the same depth!

B-Tree Properties (1)

- maximum branching factor of M
- the root has between 2 and M children or at most L data items
- other internal nodes have between $\lceil M/2 \rceil$ and M children
- internal nodes contain only search keys (no data)
- All values are stored at the leaves
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L/2 \rceil$ and L data items
- all leaves are at the same depth

These are technically B+ Trees

B-Tree Properties (2)

- maximum branching factor of M
- the root has between 2 and M children or at most L data items
- other internal nodes have between $\lceil M/2 \rceil$ and M children
- internal nodes contain only search keys (no data objects)
- All data stored at the leaves
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L/2 \rceil$ and L data items
- all leaves are at the same depth
B-Tree Properties (3)

- maximum branching factor of \(M \)
- the root has between 2 and \(M \) children or at most \(L \) data items
- other internal nodes have between \(\lceil M/2 \rfloor \) and \(M \) children
- internal nodes contain only search keys (no data)
- All values are stored at the leaves
- smallest datum between search keys \(x \) and \(y \) equals \(x \)
- each (non-root) leaf contains between \(\lceil L/2 \rfloor \) and \(L \) data items
- all leaves are at the same depth

B-Tree Properties (4)

- maximum branching factor of \(M \)
- the root has between 2 and \(M \) children or at most \(L \) data items
- other internal nodes have between \(\lceil M/2 \rfloor \) and \(M \) children
- internal nodes contain only search keys (no data)
- All values are stored at the leaves
- smallest datum between search keys \(x \) and \(y \) equals \(x \)
- each (non-root) leaf contains between \(\lceil L/2 \rfloor \) and \(L \) data items
- all leaves are at the same depth

Result

- tree is \(\Theta(n) \) deep
- all operations run in \(\Theta(n) \) time
- operations pull in about \(M/2 \) or \(L/2 \) items at a time

B-Tree Nodes

Internal nodes

<table>
<thead>
<tr>
<th>k₁</th>
<th>k₂</th>
<th>***</th>
<th>k₃</th>
<th>—</th>
<th>***</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td>₁</td>
<td>₂</td>
<td></td>
<td>₃</td>
<td></td>
<td></td>
<td>M - 1</td>
</tr>
</tbody>
</table>

Leaf nodes

<table>
<thead>
<tr>
<th>k₁</th>
<th>k₂</th>
<th>***</th>
<th>k₃</th>
<th>—</th>
<th>***</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td>₁</td>
<td>₂</td>
<td></td>
<td>₃</td>
<td></td>
<td></td>
<td>L</td>
</tr>
</tbody>
</table>

Example, Again

B-Tree with \(M = 4 \) and \(L = 4 \)

(Only showing keys, but leaves also have data!)

B-trees vs. AVL trees

Suppose we have a database* with 100 million items (100,000,000):

- Depth of AVL Tree
- Depth of B+ Tree with \(M = 128 \), \(L = 64 \)

* A very simple type of database, called "Berkeley Database" is basically a B+ tree

Building a B-Tree

The empty B-Tree

Insert(3)

Insert(14)

Insert(1)

Now, Insert(1)?
Splitting the Root

Too many keys in a leaf!

Insert(1)

And create a new root

So, split the leaf.

Insertions and Split Ends

Too many keys in a leaf!

Insert(59)

Insert(26)

So, split the leaf.

And add a new child

Propagating Splits

Too many keys in an internal node!

Insert(5)

Create a new root

Add new child

So, split the node.

Insertion in Boring Text

1. Insert the key in its leaf
2. If the leaf ends up with L+1 items, **overflow**!
 - Split the leaf into two nodes:
 - original with \(\lceil \frac{L+1}{2} \rceil \) items
 - new one with \(\lfloor \frac{L+1}{2} \rfloor \) items
 - Add the new child to the parent
 - If the parent ends up with \(M+1 \) items, **overflow**!

3. If an internal node ends up with \(M+1 \) items, **overflow**!
 - Split the node into two nodes:
 - original with \(\lceil \frac{M+1}{2} \rceil \) items
 - new one with \(\lfloor \frac{M+1}{2} \rfloor \) items
 - Add the new child to the parent
 - If the parent ends up with \(M+1 \) items, **overflow**!

4. Split an overflowed root in two and hang the new nodes under a new root

This makes the tree deeper!

After More Routine Inserts

Insert(89)

Insert(79)

Deletion

1. Delete item from leaf
2. Update keys of ancestors if necessary
Deletion and Adoption

A leaf has too few keys!

Delete(5)

So, borrow from a neighbor

Deletion and Merging

• What if the neighbor doesn’t have enough for you to borrow from?

e.g. you have \(\lceil M/2 \rceil - 1 \) and he has \(\lceil M/2 \rceil \)?

Deletion and Merging

A leaf has too few keys!

Delete(3)

And no neighbor with surplus!

But now an internal node has too few subtrees!

Deletion with Propagation (More Adoption)

A leaf has too few keys!

Adopt a neighbor

So, delete the leaf

A Bit More Adoption

Delete(1) (adopt a neighbor)

Pulling out the Root

A leaf has too few keys?

And no neighbor with surplus!

Delete(26)

But now the root has just one subtree!

A node has too few subtrees and no neighbor with surplus!

So, delete the node
Pulling out the Root (continued)

The root has just one subtree!

Simply make the one child the new root!

But that’s silly!

Deletion in Two

Boring Slides of Text

1. Remove the key from its leaf

2. If the leaf ends up with fewer than \(\lfloor L/2 \rfloor \) items, **underflow!**
 - Adopt data from a neighbor; update the parent
 - If adopting won’t work, delete node and merge with neighbor
 - If the parent ends up with fewer than \(\lceil M/2 \rceil \) items, **underflow!**

Why will merging always work if adopting doesn’t?

Deletion Slide Two

3. If an internal node ends up with fewer than \(\lceil M/2 \rceil \) items, **underflow!**
 - Adopt from a neighbor; update the parent
 - If adoption won’t work, merge with neighbor
 - If the parent ends up with fewer than \(\lceil M/2 \rceil \) items, **underflow!**

4. If the root ends up with only one child, make the child the new root of the tree

This reduces the height of the tree!

Thinking about B-Trees

- B-Tree insertion can cause (expensive) splitting and propagation
- B-Tree deletion can cause (cheap) adoption or (expensive) deletion, merging and propagation
- Propagation is rare if \(M \) and \(L \) are large (Why?)
- Repeated insertions and deletion can cause thrashing
- If \(M = L = 128 \), then a B-Tree of height 4 will store at least 30,000,000 items

Tree Names You Might Encounter

FYI:
- B-Trees with \(M = 3, L = x \) are called 2-3 trees
 - Nodes can have 2 or 3 keys
- B-Trees with \(M = 4, L = x \) are called 2-3-4 trees
 - Nodes can have 2, 3, or 4 keys

Why would we ever use these?

To Do

- Work on Project #2
- Finish reading Chapter 4
- Start reading Chapter 5