Today’s Outline

• TO DO
 – Finish Homework #1; due Friday at the beginning of class
 – Find a partner for Project #2; send me email by Friday evening

• Review AVL Trees
• Splay Trees

AVL Trees Revisited

• Balance condition:
 For every node \(x \), \(-1 \leq \text{balance}(x) \leq 1\)
 – Strong enough; Worst case depth is \(\Theta(\log n) \)
 – Easy to maintain: one single or double rotation

• Guaranteed \(\Theta(\log n) \) running time for
 – Find ?
 – Insert ?
 – Delete ?
 – buildTree ?

Other Possibilities?

• Could use different balance conditions, different ways to maintain balance, different guarantees on running time, …

• Why? Aren’t AVL trees perfect?

• Many other balanced BST data structures
 – Red-Black trees
 – AA trees
 – Splay Trees
 – 2-3 Trees
 – B-Trees
 – …

Splay Trees

• Blind adjusting version of AVL trees
 – Why worry about balances? Just rotate anyway!

• Amortized time per operations is \(O(\log n) \)
• Worst case time per operation is \(O(n) \)
 – But guaranteed to happen rarely

Insert/Find always rotate node to the root!

Subject GRE Analogy question:
AVL is to Splay trees as _________ is to _______
Recall: Amortized Complexity

If a sequence of M operations takes $O(M f(n))$ time, we say the amortized runtime is $O(f(n))$.

- Worst case time per operation can still be large, say $O(n)$
- Worst case time for any sequence of M operations is $O(M f(n))$
 Average time per operation for any sequence is $O(f(n))$

Amortized complexity is worst-case guarantee over sequences of operations.

Recall: Amortized Complexity

- Is amortized guarantee any weaker than worstcase?
- Is amortized guarantee any stronger than averagecase?
- Is average case guarantee good enough in practice?
- Is amortized guarantee good enough in practice?

The Splay Tree Idea

If you’re forced to make a really deep access:

Since you’re down there anyway, fix up a lot of deep nodes!

Find/Insert in Splay Trees

1. Find or insert a node k
2. Splay k to the root using:
 - zig-zag, zig-zig, or plain old rotation

 Why could this be good??
 - Helps the new root, k
 - Great if x is accessed again
 - And helps many others!
 - Great if many others on the path are accessed

Splaying node k to the root: Need to be careful!

One option is to repeatedly use AVL single rotation until k becomes the root: (see Section 4.5.1 for details)

What’s bad about this process?

Splaying node k to the root: Need to be careful!

One option is to repeatedly use AVL single rotation until k becomes the root: (see Section 4.5.1 for details)
Splay: Zig-Zag

*Just like an… Which nodes improve depth?

Splay: Zig-Zig

*Is this an AVL zig-zig? How to implement?

Why does this help?

Special Case for Root: Zig

Relative depth of p, Y, Z? Relative depth of everyone else?

Why not drop zig-zig and just zig all the way?

Does Splaying Help Every Node?

Only amortized guarantee!

Let’s see an example…

Splaying Example: Find(6)

Still Splaying 6

3
Finally…

Another Splay: Find(4)

Example Splayed Out

But Wait…

What happened here?

Didn’t two find operations take linear time instead of logarithmic?

What about the amortized $\Theta(\log n)$ guarantee?

Why Splaying Helps

- If a node n on the access path is at depth d before the splay, it’s at about depth $d/2$ after the splay
 - Exceptions are the root, the child of the root (and descendants), and the node splayed
- Overall, nodes which are low on the access path tend to move closer to the root

Practical Benefit of Splaying

- No heights to maintain, no imbalance to check for
 - Less storage per node, easier to code
- Often data that is accessed once, is soon accessed again!
 - Splaying does implicit caching by bringing it to the root
Splay Operations: Find

- Find the node in normal BST manner
- Splay the node to the root
 - if node not found, splay what would have been its parent

What if we didn’t splay?

Splay Operations: Insert

- Insert the node in normal BST manner
- Splay the node to the root

What if we didn’t splay?

Splay Operations: Remove

find(k)
\[\begin{array}{c}
 \text{L} \\
 \text{R}
\end{array} \]

delete k
\[\begin{array}{c}
 \text{L} \\
 \text{R}
\end{array} \]

Now what?

Join

Join(L, R): given two trees such that L < R, merge them

Splay on the maximum element in L, then attach R

Does this work to join any two trees?

Delete Example

Delete(4)

find(4)
\[\begin{array}{c}
 \text{L} \\
 \text{R}
\end{array} \]

delete 4
\[\begin{array}{c}
 \text{L} \\
 \text{R}
\end{array} \]

Find max

A Nifty Splay Operation: Splitting

Split(T, k) creates two BSTs L and R:
- all elements of T are in either L or R (T = L \cup R)
- all elements in L are \leq k
- all elements in R are \geq k
- L and R share no elements (L \cap R = \emptyset)

How do we split a splay tree?
Splitting Splays

```c
void split(Node *root, Node *left, Node *right, Object k) {
    Node *target = root->find(k);
    splay(target);
    if (target < k) {
        left = target->left;
        target->left = NULL;
        right = target;
    }
    ...
}
```

Aha, Another Way to Insert!

```c
void insert(Node *root, Object k) {
    Node *left, *right;
    split(root, left, right, k);
    root = new Node(k, left, right);
}
```

Splay Tree Summary

- All operations are in amortized $\Theta(\log n)$ time
- Splaying can be done top-down; better because:
 - only one pass
 - no recursion or parent pointers necessary
 - we didn’t cover top-down in class
- Splay trees are very effective search trees
 - relatively simple
 - no extra fields required
 - excellent locality properties: frequently accessed keys are cheap to find

To Do

- Finish reading Chapter 4
- Homework #1 due Friday
- Project #2 will be released Friday
 - Pick a partner!