CSE 326: Data Structures

Topic #5: Binary Search Trees

Ashish Sabharwal
Autumn, 2003

Today’s Outline

• Admin: Written homework #1 is out!
• Quick Tree Review
• Binary Trees
• Dictionary ADT / Search ADT
• Binary Search Trees

Tree Calculations

Recall: height is max number of edges from root to a leaf

Find the height of the tree...

runtime:

Tree Calculations Example

How high is this tree?

More Recursive Tree Calculations: Tree Traversals

A traversal is an order for visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree
• In-order: Left subtree, root, right subtree
• Post-order: Left subtree, right subtree, root

Binary Trees

• Binary tree is
 – a root
 – left subtree (maybe empty)
 – right subtree (maybe empty)

• Representation:
Binary Tree: Representation

A

B

C

D

E

F

Binary Tree: Special Cases

Complete Tree

Perfect Tree

Full Tree

Binary Tree: Some Numbers!

For binary tree of height h:
- max # of leaves:
- max # of nodes:
- min # of leaves:
- min # of nodes:

What’s the average tree height for n nodes, assuming all distinct trees of n nodes are equally likely?

ADTs Seen So Far

- Stack
 - Push
 - Pop
- Queue
 - Enqueue
 - Dequeue
- List
 - Insert
 - Remove
 - Find
- Priority Queue
 - Insert
 - DeleteMin

Remember decreaseKey?

New! The Search ADT

- Data:
 - unique user-specified keys
 - Or: a set of keys

- Operations:
 - Insert (key)
 - Find (key)
 - Checks for membership
 - Remove (key)

Also New! The Dictionary ADT

- Data:
 - values mapped to user-specified keys
 - Or: a set of (key, value) pairs

- Operations:
 - Insert (key, value)
 - Find (key)
 - Remove (key)

The Search ADT is sometimes called the "Set ADT"

An easy extension of the Search ADT!
A Modest Few Uses

- Sets
- Dictionaries
- Networks: Router tables
- Operating systems: Page tables
- Compilers: Symbol tables

Probably the most widely used ADT!

Naïve Implementations

- Insert
- Find
- Delete

- Unsorted Linked-list
- Unsorted array
- Sorted array

What limits the performance?

Binary Search Tree Data Structure

- Structural property
 - each node has ≤ 2 children
 - result:
 - storage is small
 - operations are simple
 - average depth is small
- Order property
 - all keys in left subtree smaller than root’s key
 - all keys in right subtree larger than root’s key
 - result: easy to find any given key
- What must I know about what I store?

Example and Counter-Example

Binary SEARCH TREE

NOT A
Binary SEARCH TREE

Find in BST, Recursive

Find in BST, Iterative

Node

Node Find(Object key, Node root) {
 if (root == NULL)
 return NULL;
 if (key < root.key)
 return Find(key, root.left);
 else if (key > root.key)
 return Find(key, root.right);
 else
 return root;
}

Node

Node Find(Object key, Node root) {
 Node root;
 while (root != NULL && root.key != key) {
 if (key < root.key)
 root = root.left;
 else
 root = root.right;
 }
 return root;
}

Runtime:
Binary Search vs. Binary Search Tree

A well balanced binary search tree allows \(O(\log n)\) time binary search!

Insert in BST

Insertions happen only at the leaves – easy!

BuildTree for BST

- Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.
 Runtime depends on the order!
 - in given order
 - in reverse order
 - median first, then left median, right median, etc.

Analysis of BuildTree

- Worst case: \(O(n^2)\) as we’ve seen
- Average case assuming all orderings equally likely:
 - Sum of all depths:
 - \(D(n) = 2D(i) + D(n-i-1) + (n-1)\)
 - Average depth of a node:
 - Total runtime:

Bonus: FindMin/FindMax

- Find minimum
- Find maximum

Deletion in BST

Why might deletion be harder than insertion?
Lazy Deletion

Instead of physically deleting nodes, just mark them as deleted

- simpler
- physical deletions done in batches
- some adds just flip deleted flag
- extra memory for deleted flag
- many lazy deletions slow finds
- some operations may have to be modified (e.g., min and max)

Non-lazy Deletion – The Leaf Case

Delete(17)

Deletion – The One Child Case

Delete(15)

Deletion – The Two Child Case

Delete(5)

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees!

Options:
- \textit{suc}c from right subtree: \textit{findMin}(right)
- \textit{pred} from left subtree: \textit{findMax}(left)

Now delete the original node containing \textit{suc}c or \textit{pred}
- Leaf or one child case – easy!
Finally…

\[\begin{array}{c}
\text{8} \\
\text{7 replaces 5} \\
\text{3} \\
\text{2} \\
\text{1} \\
\end{array} \]

Original node containing 7 gets deleted

To Do

• Start Homework #1
 – Somewhat long but easy
 – Will get you hands on practice with Math background and heaps

• Read chapter 4 in the book