Today’s Outline

- Binary Heaps: average runtime of insert
- Leftist Heaps: re-do proof of property #1
- Amortized Runtime
- Skew Heaps
- Binomial Queues
- Comparing Implementations of Priority Qs

Binary Heaps: Average runtime of Insert

Recall: Insert-in-Binary-Heap(x) {
 Put x in the next available position
 percolateUp(last node)
}

How long does this percolateUp(last node) take?
- Worst case: Θ (tree height), i.e. Θ (log n)
- Average case: Θ (1) Why??

Average runtime of insert in binary heap = Θ (1)

Right Path in a Leftist Tree is Short (#1)

Claim: The right path is as short as any in the tree.

Proof: (By contradiction)

Pick a shorter path: $D_1 < D_2$
Say it diverges from right path at x

$npl(L) \leq D_1 - 1$ because of the path of length $D_1 - 1$ to null
$npl(R) \geq D_2 - 1$ because every node on right path is leftist

Leftist property at x violated!

A Twist in Complexity Analysis: The Amortized Case

If a sequence of M operations takes $O(M f(n))$ time,
we say the amortized runtime is $O(f(n))$.

- Worst case time per operation can still be large, say $O(n)$
- Worst case time for any sequence of M operations is $O(M f(n))$
- Average time per operation for any sequence is $O(f(n))$

Is this the same as average time?

Skew Heaps

Problems with leftist heaps
- extra storage for npl
- extra complexity/logic to maintain and check npl
- two pass iterative merge (requires stack!)
- right side is “often” heavy and requires a switch

Solution: skew heaps
- blind adjusting version of leftist heaps
- merge *always* switches children when fixing right path
- iterative method has only one pass
- amortized time for merge, insert, and deleteMin is Θ (log n)
- however, worst case time for all three is Θ (n)
Merging Two Skew Heaps

```
void merge(heap1, heap2) {
    case {
        heap1 == NULL: return heap2;
        heap2 == NULL: return heap1;
        heap1.findMin() < heap2.findMin():
            temp = heap1.right;
            heap1.right = heap1.left;
            heap1.left = merge(heap2, temp);
            return heap1;
        otherwise:
            return merge(heap2, heap1);
    }
}
```

Only one step per iteration, with children always switched

Example

```
merge
```

Skew Heap Code

Runtime Analysis:
Worst-case and Amortized

- No worst case guarantee on right path length!
- All operations rely on merge
 \[
 \Rightarrow \text{worst case complexity of all ops } = \]

- Will do amortized analysis later in the course
 (see chapter 11 if curious)
- Result: \(M \) merges take time \(M \log n \)
 \[
 \Rightarrow \text{amortized complexity of all ops } = \]

ATaB: Comparing Heaps

- Binary Heaps
- Leftist Heaps
- d-Heaps
- Skew Heaps

Yet Another Data Structure:
Binomial Queues

- Structural property
 - Forest of binomial trees with at most
 one tree of any height

 What's a forest? What's a binomial tree?

- Order property
 - Each binomial tree has the heap-order property

My opinion: Beautiful and elegant!
The Binomial Tree, B_h

- B_h has height h and exactly 2^h nodes
- B_h is formed by making B_{h-1} a child of another B_{h-1}
- Root has exactly h children
- Number of nodes at depth d is binomial coeff. $\binom{h}{d}$
 - Hence the name; we will not use this last property

![Binomial Tree Diagram](image)

Binomial Q with n elements

Binomial Q with n elements has a unique structural representation in terms of binomial trees!

Write n in binary: $n = 1101$ (base 2) = 13 (base 10)

![Binomial Q with n elements Diagram](image)

Properties of Binomial Q

- At most one binomial tree of any height
- n nodes \Rightarrow binary representation is of size $\Theta(\log n)$
 \Rightarrow deepest tree has height $\Theta(\log n)$
 \Rightarrow number of trees is $\Theta(1)$

Define: $\text{height}(\text{forest } F) = \max_{\text{tree } T \in F} \{ \text{height}(T) \}$

Binomial Q with n nodes has height $\Theta(\log n)$

Operations on Binomial Q

- Will again define merge as the base operation

 - insert, deleteMin, buildBinomialQ will use merge

- Can we do increaseKey efficiently?
- decreaseKey?

- What about findMin?

Merging Two Binomial Qs

Essentially like adding two binary numbers!

1. Combine the two forests
2. For k from 1 to maxheight {
 a. $m \leftarrow$ total number of B_k's in the two BQs
 b. if $m=0$: continue; 0+0 = 0
 c. if $m=1$: continue; 1+0 = 1
 d. if $m=2$: combine the two B_k's to form a B_{k+1}
 e. if $m=3$: retain one B_k and combine the other two to form a B_{k+1}
}

Claim: When this process ends, the forest has at most one tree of any height

 Complexity of Merge

Constant time for each height
Max height is $\log n$

\Rightarrow worst case running time $= \Theta(\log n)$
Insert in a Binomial Q

Insert\((x)\): Similar to leftist or skew heap

- **runtime**
 - Worst case complexity: same as merge
 \(\Theta(\)\)
 - Average case complexity: \(\Theta(1)\)
 - Why?? *Hint: Think of adding 1 to 1101*

deleteMin in Binomial Q

deleteMin: Similar to leftist and skew heaps

A tiny bit more complicated

deleteMin: Example

BQ

- Find and delete smallest root
- Merge without the shaded part

BQ'

buildBinomialQ

Call insert \(n \) times on an initially empty BQ

- **runtime:**
 - naive: \(O(n \log n)\)
 - careful analysis: \(\Theta(n)\)
 - idea: count the number of times one needs to combine trees

To Do

- Project #1 due tonight!
 - Bring printout to section tomorrow
- Written homework #1
 - will be out later today; I’ll send an email
- Revise binary search tree basics
- Begin reading chapter 4 in the book