CSE 326: Data Structures

Topic 2: Asymptotic Analysis

Ashish Sabharwal
Autumn, 2003

Today’s Outline

- Admin: Office hours, survey results, etc.
- Project 1 – Sound Blaster!
- Asymptotic analysis
- A little bit of math (review text for more)

Office Hours, etc.

Ashish Mon, Thu 10:30-11:20 Allen 214
Ethan Tue 11:00-12:00 Allen 216
Albert Fri 12:30-1:20 Allen 002

Or by appointment.

TODO: Important!
1. Subscribe to mailing lists if you haven’t
2. Mark errata in your copy of textbook

Survey Results:
Where do you stand?

- Java: 75% used in 143
 60% have other experience
- Unix: 70% know the basics
- Big-O: 75% have seen the notation in basic form
- Solving recurrences: 65% know basics
- Data structures: linked lists, binary search tree
 25% have seen hash tables
- Sorting: 75%

Quick Review

What are the three things that define the stack ADT?

1.
2.
3.

Project 1 – Sound Blaster!

Play your favorite song in reverse!

Aim:
1. Get familiar with UNIX
2. Implement DoubleStack class
 (base code provided)
3. Write program to reverse a sound file

Due: Wed, Oct 8, 11:00 pm
(hard copy in Section on Oct 9)
Analysis of Algorithms

• Efficiency measure
 – how long the program runs time complexity
 – how much memory it uses space complexity
 • For today, we’ll focus on time complexity only

• Why analyze at all?
 – Confidence: algorithm will work well in practice
 • gives you boss a reason to pay you right away!
 – Insight: alternative, better algorithms

Why do we care?

• Most algorithms are fast for small \(n \)
 – Time difference too small to be noticeable
 – External things dominate (OS, disk I/O, …)

• BUT \(n \) is often large in practice
 – Databases, internet, graphics, …

• Time difference really shows up as \(n \) grows!

Asymptotic Analysis

• Complexity as a function of input size \(n \)
 \(T(n) = 4n + 5 \)
 \(T(n) = 0.5 n \log n - 2n + 7 \)
 \(T(n) = 2^n + n^3 + 3n \)

• What happens as \(n \) grows?

Analysis: Simplifying assumptions

• Ideal single-processor machine
 (serialized operations)

• “Standard” instruction set
 (load, add, store, etc.)

• All operations take 1 time unit
 (including each Java or pseudocode statement)

ATaB: Analyzing Code

Basic Java operations
Consecutive statements
Conditionals
Loops
Function calls
Recursive functions

Constant time
Sum of times
Larger branch plus test
Sum of iterations
Cost of function body
Solve recurrence relation

Analyze your code!

Ashish Takes a Break

```
bool ArrayFind( int array[], int n,
int key){
    // Insert your algorithm here
```

What algorithm would you choose to implement this code snippet?
ATaB: Linear Search Analysis

```c
bool LinearArrayFind(int array[], int n, int key) {
    for (int i = 0; i < n; i++) {
        if (array[i] == key) {
            # Found it!
            return true;
        }
    }
    return false;
}
```

- Best Case:
- Worst Case:

ATaB: Binary Search Analysis

```c
bool BinArrayFind(int array[], int a, int e, int key) {
    # The subarray is empty
    if (a > e) return false;
    // Search this subarray recursively
    int mid = (a + e) / 2;
    if (array[key] == array[mid]) {
        return true;
    } else if (key < array[mid]) {
        return BinArrayFind(array, a, mid-1, key);
    } else {
        return BinArrayFind(array, mid+1, e, key);
    }
}
```

- Best Case:
- Worst Case:

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case(s)?
2. “Expand” the original relation to find an equivalent general expression in terms of the number of expansions.
3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case.

Linear Search vs Binary Search

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worst Case</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So… which algorithm is better? What tradeoffs can you make?

Fast Computer vs. Slow Computer

```
import matplotlib.pyplot as plt

# Sample data
num_ticks = [1, 10, 100, 1000, 10000]
linear_search_time = [1, 10, 100, 1000, 10000]
linear_search_time_double = [1, 10, 100, 1000, 10000]

plt.plot(num_ticks, linear_search_time, label='linear search on Pentium IV
linear search on 486')
plt.plot(num_ticks, linear_search_time_double, label='linear search on Pentium IV
binary search on 486')
plt.xlabel('# elements to be searched')
plt.ylabel('time in ms')
plt.legend()
plt.show()
```

Fast Computer vs. Smart Programmer (round 1)
Fast Computer vs. Smart Programmer (round 2)

Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
 - A valuable tool when the input gets “large”
 - Ignores the effects of different machines or different implementations of the same algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
 - Linear search is $T(n) = 2n + 1 \in O(n)$
 - Binary search is $T(n) = 4 \log_2 n + 2 \in O(\log n)$

Remember: the fastest algorithm has the slowest growing function for its runtime

Order Notation: Intuition

Although not yet apparent, as n gets “sufficiently large”, $f(n)$ will be “greater than or equal to” $g(n)$.

Order Notation: Definition

$O(f(n))$ is a set or class of functions

$g(n) \in O(f(n)) \iff$ There exist constants c and n_0 such that $g(n) \leq c f(n)$ for all $n \geq n_0$

Example:

$100n^2 + 1000 \leq 5 (n^3 + 2n^2)$ for all $n \geq 19$

So $g(n) \in O(f(n))$

Sometimes, you’ll see the notation $g(n) = O(f(n))$. This is equivalent to $g(n) \in O(f(n))$.

Remember: notation $O(f(n)) = g(n)$ is meaningless!

Order Notation: Example

Set Notation

“$O(f(n))$ is a set of functions”

Set notation allows us to formalize our intuition $O(n^3)$ vs. $O(2^n)$
Big-O: Common Names

- constant: $O(1)$
- logarithmic: $O(\log n)$ ($\log n, \log n^2 \in O(\log n)$)
- poly-log: $O(\log^2 n)$
- linear: $O(n)$
- log-linear: $O(n \log n)$
- superlinear: $O(n^{1+c})$ (c is a constant > 0)
- quadratic: $O(n^2)$
- cubic: $O(n^3)$
- polynomial: $O(n^k)$ (k is a constant)
- exponential: $O(c^n)$ (c is a constant > 1)

Meet the Family

- $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
 - $o(f(n))$ is the set of all functions asymptotically strictly less than $f(n)$
- $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
 - $\omega(f(n))$ is the set of all functions asymptotically strictly greater than $f(n)$
- $\Theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$

Meet the Family, Formally

- $g(n) \in O(f(n))$ iff There exist c and n_0 such that $g(n) \leq c f(n)$ for all $n \geq n_0$
 - $g(n) \in o(f(n))$ iff There exists a n_0 such that $g(n) < c f(n)$ for all c and $n \geq n_0$
 Equivalent to: $\lim_{n \to \infty} g(n)/f(n) = 0$
- $g(n) \in \Omega(f(n))$ iff There exist c and n_0 such that $g(n) \geq c f(n)$ for all $n \geq n_0$
 - $g(n) \in \omega(f(n))$ iff There exists a n_0 such that $g(n) > c f(n)$ for all c and $n \geq n_0$
 Equivalent to: $\lim_{n \to \infty} g(n)/f(n) = \infty$
- $g(n) \in \Theta(f(n))$ iff $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$

Big-Omega et al. Intuitively

<table>
<thead>
<tr>
<th>Asymptotic Notation</th>
<th>Mathematics Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>\leq</td>
</tr>
<tr>
<td>Ω</td>
<td>\geq</td>
</tr>
<tr>
<td>Θ</td>
<td>$=$</td>
</tr>
<tr>
<td>o</td>
<td>$<$</td>
</tr>
<tr>
<td>ω</td>
<td>$>$</td>
</tr>
</tbody>
</table>

True or False?

<table>
<thead>
<tr>
<th>Statement</th>
<th>True/False</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10,000 n^2 + 25n \in \Theta(n^2)$</td>
<td>True</td>
</tr>
<tr>
<td>$0.000000001 n^2 \in \Theta(n^2)$</td>
<td>True</td>
</tr>
<tr>
<td>$n^2 + 4n \in \omega(n^2)$</td>
<td>True</td>
</tr>
<tr>
<td>$n \log n \in O(2^n)$</td>
<td>False</td>
</tr>
<tr>
<td>$n \log n \in \Omega(n^n)$</td>
<td>False</td>
</tr>
<tr>
<td>$n^2 + 4 \in o(n^2)$</td>
<td>True</td>
</tr>
</tbody>
</table>

Types of Analysis

Two orthogonal axes:

- bound flavor
 - upper bound (O, o)
 - lower bound (Ω, ω)
 - asymptotically tight (Θ)
- analysis case
 - worst case (adversary)
 - average case
 - best case
 - “amortized”
ATaB: Pros and Cons of Asymptotic Analysis

Math background: Proof by...

• Counterexample
 – show an example which does not fit with the theorem
 – QED (the theorem is disproven)

• Contradiction
 – assume the opposite of the theorem
 – derive a contradiction
 – QED (the theorem is proven)

• Induction
 – prove for a base case (e.g., n = 1)
 – state hypothesis: assume true for a generic value (n = k)
 – inductive step: prove for the next value (n = k + 1)
 – QED (the theorem is proven)

Inductive Proof of Correctness

```c
int sum(int v[], int n)
{
if (n == 0) return 0;
else return v[n-1] + sum(v, n-1);
}
```

Theorem: `sum(v, n)` correctly returns sum of first `n` elements of array `v` for any `n`

Base case: Program is correct for `n=0`; returns 0. ➤

Inductive hypothesis (`n=k`): Assume `sum(v, k)` returns sum of first `k` elements of `v`.

Inductive step (`n=k+1`): `sum(v, k+1)` returns `v[k]+sum(v, k)`, which is the same of the first `k+1` elements of `v`. ➤

Inductive Proof of Complexity: Binary Search, Worst Case

If you know the closed form solution, you can validate it by ordinary induction

- **Base case:**
 - \[T(1) = b + c \log 1 = b \]

- **Assume** \[T(n) = b + c \log n \] hypothesis

- **Definition of** \[T(2a) = T(a) + c \] by induction hypothesis

- **Thus:** \[T(n) = \Theta(\log n) \] Q.E.D.

Asymptotic Analysis Summary

• Determine what characterizes a problem’s size

• Express how much resources (time, memory, etc.) an algorithm requires as a function of input size using \(O(\cdot), \ \Omega(\cdot), \ \Theta(\cdot) \) [upper, lower, tight bounds]
 – worst case
 – best case
 – average case
 – common case
 – overall

To Do

• Get working on **Project 1**
 – Due Wed. Oct 8 at 11:00 PM sharp!
 – Bring questions to section tomorrow

• Sign up for 326 mailing list(s)

• Mark errata in your textbook

• Continue reading sections 1.1-1.3, 2 and 3
 – Also start/skim on next sections:
 4.1 introduction to trees
 6.1-6.4 priority queues and binary heaps