Beauty is Only $\Theta(\log n)$ Deep

- Binary Search Trees are fast if they’re shallow e.g.: complete
- Problems occur when one branch is much longer than the other

How to capture the notion of a “sort of” complete tree?

Balance

- Balance
 - height(left subtree) - height(right subtree)
 - zero everywhere \Rightarrow perfectly balanced
 - small everywhere \Rightarrow balanced enough

Balance between -1 and 1 everywhere \Rightarrow maximum height of 1.44 log n

AVL Tree

Dictionary Data Structure

- Binary search tree properties
- Balance property
 - balance = height of left child – height of right child
 - NULL child has height -1
 - balance of every node is:
 - $-1 \leq b \leq 1$
 - result:
 - depth $\Theta(\log n)$

An AVL Tree

Not An AVL Tree
Bad Case #1

Insert(small)
Insert(middle)
Insert(tall)

Single Rotation

Basic operation used in AVL trees:
A right child could legally have its parent as its left child

General Case: Insert Unbalances

General Single Rotation

➤ Height of root same as it was before insert!
➤ We can stop here!

Bad Case #2

Insert(small)
Insert(tall)
Insert(middle)

Will a single rotation
(bringing T up to the top) fix this?

Double Rotation
General Double Rotation

- Initially: insert into X unbalances tree (root height goes to h+3)
- “Zig zag” to pull up c – restores root height to h+2, left subtree height to h

Another Double Rotation Case

- Initially: insert into Y unbalances tree (root height goes to h+2)
- “Zig zag” to pull up c – restores root height to h+1, left subtree height to h

Insert Algorithm

- Find spot for value
- Hang new node
- Search back up looking for imbalance
- If there is an imbalance:
 - “outside”: Perform single rotation and exit
 - “inside”: Perform double rotation and exit

AVL Insert Algorithm

```java
void insert(Comparable x, Node * & root){
    if { root == NULL }
        root = new Node(x);
    else if [x < root->key]{
        insert( x, root->left );
        if (root unbalanced) { rotate... }
    else
        insert( x, root->right );
    } if (root unbalanced) { rotate... }
    root->height = max(root->left->height,
                        root->right->height)+1;
}
```

AVL

- Automatically Virtually Leveled
- Architecture for inVisible Leveling
- Articulating Various Lines
- Amortizing? Very Lousy!
- Amazingly Vexing Letters

Adelson-Velskii Landis
Pros and Cons of AVL Trees

Arguments for AVL trees:
1. Search is $O(\log N)$ since AVL trees are always balanced.
2. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for height info.
2. Asymptotically faster but usually slower in practice.

Coming Up

- Splay trees
- Get going this weekend on Assignment #3!
- Read section 4.5

To hand in on Monday: One paragraph, in your own words:
1. How (roughly) do Splay Trees work?
2. What are their advantages?
3. What kind of data would give the very best performance for a Splay tree?