CSE 326: Data Structures
Lecture #20
Really, Really Hard Problems
Henry Kautz
Winter Quarter 2002

Today’s Agenda
• Solving pencil-on-paper puzzles
 – A “deep” algorithm for Euler Circuits
• Euler with a twist: Hamiltonian circuits
• Hamiltonian circuits and NP complete problems
• The NP =? P problem
 – Your chance to win a Turing award!
 – Any takers?
• Weiss Chapter 9.7

It’s Puzzle Time!

Which of these can you draw without lifting your pencil, drawing each line only once? Can you start and end at the same point?

Historical Puzzle: Seven Bridges of Königsberg

Want to cross all bridges but… Can cross each bridge only once (High toll to cross twice?!)?

A “Multigraph” for the Bridges of Königsberg

Find a path that traverses every edge exactly once

Euler Circuits and Tours
• Euler tour: a path through a graph that visits each edge exactly once
• Euler circuit: an Euler tour that starts and ends at the same vertex
• Named after Leonhard Euler (1707-1783), who cracked this problem and founded graph theory in 1736
• Some observations for undirected graphs:
 – An Euler circuit is only possible if the graph is connected and each vertex has even degree (= # of edges on the vertex) [Why?]
 – An Euler tour is only possible if the graph is connected and either all vertices have even degree or exactly two have odd degree [Why?]
Euler Circuits and Tours
- Euler tour: a path through a graph that visits each edge exactly once
- Euler circuit: an Euler tour that starts and ends at the same vertex
- Named after Leonard Euler (1707-1783), who cracked this problem and founded graph theory in 1736
- Some observations for undirected graphs:
 - An Euler circuit is only possible if the graph is connected and each vertex has even degree (= # of edges on the vertex)
 - Need one edge to get into vertex and one edge to get out
 - An Euler tour is only possible if the graph is connected and either all vertices have even degree or exactly two have odd degree
 - Could start at one odd vertex and end at the other

Euler Circuit Problem
- Problem: Given an undirected graph \(G = (V,E) \), find an Euler circuit in \(G \)
- Note: Can check if one exists in linear time (how?)
- Given that an Euler circuit exists, how do we construct an Euler circuit for \(G \)?
- Hint: Think deep! We’ve discussed the answer in depth before...

Finding Euler Circuits: DFS and then Splice
- Given a graph \(G = (V,E) \), find an Euler circuit in \(G \)
 - Can check if one exists in \(O(|V|) \) time (check degrees)
- Basic Euler Circuit Algorithm:
 1. Do a depth-first search (DFS) from a vertex until you are back at this vertex
 2. Pick a vertex on this path with an unused edge and repeat 1.
 3. Splice all these paths into an Euler circuit
- Running time = \(O(|V| + |E|) \)

Euler Circuit Example
- DFS(A):
 - A B D F E C A
- DFS(B):
 - B G C B
- Splice at G:
 - A B G D E G C B D F E C A

Euler with a Twist: Hamiltonian Circuits
- Euler circuit: A cycle that goes through each edge exactly once
- Hamiltonian circuit: A cycle that goes through each vertex exactly once
- Does graph I have:
 - An Euler circuit?
 - A Hamiltonian circuit?
- Does graph II have:
 - An Euler circuit?
 - A Hamiltonian circuit?

Finding Hamiltonian Circuits in Graphs
- Problem: Find a Hamiltonian circuit in a graph \(G = (V,E) \)
 - Sub-problem: Does \(G \) contain a Hamiltonian circuit?
 - No known easy algorithm for checking this...
- One solution: Search through all paths to find one that visits each vertex exactly once
 - Can use your favorite graph search algorithm (DFS!) to find various paths
- This is an exhaustive search (“brute force”) algorithm
- Worst case \(\rightarrow \) need to search all paths
 - How many paths??
Analysis of our Exhaustive Search Algorithm

- Worst case \(\Rightarrow \) need to search all paths
 - How many paths?
- Can depict these paths as a search tree
- Let the average branching factor of each node in this tree be \(B \)
- \(|V| \) vertices, each with \(= B \) branches
- Total number of paths \(= B \cdot B \cdot B \cdots B = O(B^n) \)
- Worst case \(\Rightarrow \) Exponential time!

How bad is exponential time?

<table>
<thead>
<tr>
<th>(N)</th>
<th>(\log N)</th>
<th>(N \log N)</th>
<th>(N^2)</th>
<th>(2^N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>30</td>
<td>100</td>
<td>1024</td>
</tr>
<tr>
<td>100</td>
<td>7</td>
<td>700</td>
<td>10,000</td>
<td>1,000,000,000,000,000,000,000,000</td>
</tr>
<tr>
<td>1,000</td>
<td>10</td>
<td>10,000</td>
<td>1,000,000</td>
<td>Fe'getabousti!</td>
</tr>
<tr>
<td>1,000,000</td>
<td>20</td>
<td>20,000,000</td>
<td>1,000,000,000,000</td>
<td>ahins</td>
</tr>
</tbody>
</table>

Review: Polynomial versus Exponential Time

- Most of our algorithms so far have been \(O(\log N) \), \(O(N) \), \(O(N \log N) \) or \(O(N^2) \) running time for inputs of size \(N \)
 - These are all polynomial time algorithms
 - Their running time is \(O(N^k) \) for some \(k > 0 \)
- Exponential time \(B^N \) is asymptotically worse than \(\) any polynomial function \(N^k \) for any \(k \)
 - For any \(k \), \(N^k \) is \(\Omega(B^N) \) for any constant \(B > 1 \)

The Complexity Class P

- The set P is defined as the set of all problems that can be solved in polynomial worse case time
 - Also known as the polynomial time complexity class
 - All problems that have some algorithm whose running time is \(O(N^k) \) for some \(k \)
- Examples of problems in P: tree search, sorting, shortest path, Euler circuit, etc.

The Complexity Class NP

- Definition: NP is the set of all problems for which a given candidate solution can be tested in polynomial time
- Example of a problem in NP:
 - Hamiltonian circuit problem: Why is it in NP?
Why NP?

- NP stands for Nondeterministic Polynomial time
 - Why “nondeterministic”? Corresponds to algorithms that can search all possible solutions in parallel and pick the correct one. Each solution can be checked in polynomial time.
 - Nondeterministic algorithms don’t exist – purely theoretical idea invented to understand how hard a problem could be.
- Examples of problems in NP:
 - Hamiltonian circuit: Given a candidate path, can test in linear time if it is a Hamiltonian circuit.
 - Sorting: Can test in linear time if a candidate ordering is correct.
 - Are any other problems in P also in NP?

More Revelations About NP

- Are any other problems in P also in NP?
 - YES! All problems in P are also in NP
- Notation: P ⊆ NP
 - If you can solve a problem in polynomial time, can definitely verify a solution in polynomial time.
- Question: Are all problems in NP also in P?
 - Is NP ⊆ P?

Your Chance to Win a Turing Award: P = NP?

- Nobody knows whether NP ⊆ P
 - Proving or disproving this will bring you instant fame!
- It is generally believed that P ≠ NP, i.e. there are problems in NP that are not in P
 - But no one has been able to show even one such problem!
 - Practically all of modern complexity theory is premised on the assumption that P ≠ NP.
- A very large number of useful problems are in NP.

NP-Complete Problems

- The “hardest” problems in NP are called NP-complete problems (NPC).
- Why “hardest”? A problem X is NP-complete iff:
 1. X is in NP and
 2. Any problem Y in NP can be converted to an instance of X in polynomial time, such that solving X also provides a solution for Y.
 - In other words: Can use algorithm for X as a subroutine to solve Y.
- Thus, if you find a poly time algorithm for just one NPC problem, all problems in NP can be solved in poly time.
 - Example: The Hamiltonian circuit problem can be shown to be NPC-complete (not so easy to prove!)

Searching Really Big Graphs

- Any kind of search (DFS, BFS, A*) is polynomial in the size of the graph (number of vertices).
- But a search problem might be NP-complete in terms of a small description of a very large graph.
- Example: Blocks World
 - O(|V|) to find a shortest path between any two vertices.
 - But if given only the initial and final states (size of these descriptions is = number of blocks), problem is NP-complete.

P, NP, and Exponential Time Problems

- All currently known algorithms for NP-complete problems run in exponential worst case time.
 - Finding a polynomial time algorithm for any NPC problem would mean:
- Diagram depicts relationship between P, NP, and EXPTIME (class of problems that provably require exponential time to solve).
 - It is believed that P ≠ NP ≠ EXPTIME.
The Graph of NP-Completeness

- Stephen Cook first showed (1971) that satisfiability of Boolean formulas (SAT) is NP-complete
- Hundreds of other problems (from scheduling and databases to optimization theory) have since been shown to be NP-complete
- How? By showing an algorithm that converts a known NPC problem to your pet problem in poly time \(\rightarrow \) then, your problem is also NPC!

Showing NP-completeness: An example

- Consider the Traveling Salesperson (TSP) Problem:
 - Given a fully connected, weighted graph \(G = (V,E) \), is there a cycle that visits all vertices exactly once and has total cost \(\leq K \)?
 - TSP is in NP (why?)
 - Can we show TSP is NP-complete?
 - Hamiltonian Circuit (HC) is NPC
 - Can show TSP is also NPC if we can convert any input for HC to an input for TSP in poly time

Coping with NP-Completeness

1. Settle for algorithms that are fast on average: Worst case still takes exponential time, but doesn’t occur very often. But some NP-Complete problems are also average-time NP-Complete!
2. Settle for fast algorithms that give near-optimal solutions: In TSP, may not give the cheapest tour, but maybe good enough. But finding even approximate solutions to some NP-Complete problems is NP-Complete!
3. Just get the exponent as low as possible! Much work on exponential algorithms for Boolean satisfiability: in practice can usually solve problem with 1,000+ variables
 - Hot Application: Microprocessor Design Verification

Calendar

- Coming Up – Specialized Data Structures
 - Search Trees for Spatial Data (Class notes)
 - Binomial Queues (Ch 6.8)
 - Randomized Data Structures (Ch 10.4.2, 12.5)
 - Huffman Codes (10.1.2)
- Friday, March 8th – Practice homework
 - Not to be turned in – a solution set will be handed out on the last day of class
 - Doing this assignment will be a very good way to prepare for the midterms!
- Homework #7 (Mazes) due Wednesday, March 13th
 - NO late assignments accepted after Friday, March 15th – we mean it!
- Friday, March 15th – Last day of class – party – demos – celebration
- Monday, March 18th, 2:30 – 4:20 pm – Final Exam

TSP is NP-complete!

- We can show TSP is also NPC if we can convert any input for HC to an input for TSP in polynomial time.
 - Here’s one way:

This graph has a Hamiltonian circuit iff this fully-connected graph has a TSP cycle of total cost \(\leq K \), where \(K = |V| \) (here, \(K = 5 \))