Today

- How to Make Depth-First Search Find Optimal Paths
 - Why bother?
- Finding Connected Components
 - Application to machine vision
- Finding Minimum Spanning Trees
 - Yet another use for union/find

Is BFS the Hands Down Winner?

Consider finding a path from vertex S to G in an unweighted graph where you do not have a heuristic function $h(n)$.

- Depth-first search
 - Simple to implement (implicit or explicit stack)
 - Does not always find shortest paths
 - Must be careful to "mark" visited vertices, or you could go into an infinite loop if there is a cycle
- Breadth-first search
 - Simple to implement (queue)
 - Always finds shortest paths
 - Marking visited nodes can improve efficiency, but even without doing so search is guaranteed to terminate

Space Requirements

Consider space required by the stack or queue…

- Suppose
 - G is known to be at distance d from S
 - Each vertex n has k out-edges
 - There are no (undirected or directed) cycles
- BFS queue will grow to size k^d
 - Will simultaneously contain all nodes that are at distance d (once last vertex at distance $d-1$ is expanded)
 - For $k=10$, $d=15$, size is 1,000,000,000,000,000

DFS Space Requirements

- Consider DFS, where we limit the depth of the search to d
 - Force a backtrack at $d+1$
 - When visiting a node n at depth d, stack will contain
 - (at most) $k-1$ siblings of n
 - parent of n
 - siblings of parent of n
 - grandparent of n
 - siblings of grandparent of n…
 - DFS queue grows at most to size dk
 - For $k=10$, $d=15$, size is 150
 - Compare with BFS 1,000,000,000,000,000

Conclusion

- For very large graphs – ones that are generated “on the fly” rather than stored entirely in memory
 - DFS is hugely more memory efficient, if we know the distance to the goal vertex!
- But suppose we don’t know d. What is the (obvious) strategy?
Iterative Deepening DFS

IterativeDeepeningDFS(vertex s, g) {
 for (i=1; true; i++)
 if DFS(i, s, g) return;
}

// Also need to keep track of path found
bool DFS(int limit, vertex s, g) {
 if (s==g) return true;
 if (limit-- <= 0) return false;
 for (n in children(s))
 if (DFS(limit, n, g)) return true;
 return false;
}

Analysis of Iterative Deepening

• Even without “marking” nodes as visited, iterative-deepening DFS never goes into an infinite loop
 - For very large graphs, memory cost of keeping track of visited vertices may make marking prohibitive
• Work performed with limit < actual distance to G is wasted – but the wasted work is usually small compared to amount of work done during the last iteration

Asymptotic Analysis

• There are “pathological” graphs for which iterative deepening is bad:

 \[
 \begin{align*}
 &n = d \\
 &S \longrightarrow \cdots \longrightarrow G
 \end{align*}
 \]

 \[
 \text{Iterative Deepening DFS} = 1 + (1+2) + (1+2+3+\ldots) + \cdots = \sum_{i=1}^{n} \sum_{j=1}^{i} = O(n^2)
 \]

 BFS = \(O(n)\)

A Better Case

Suppose each vertex \(n\) has \(k\) out-edges
 - We don’t worry about cycles – just search the vertices over again
• Exhaustive DFS to level \(i\) reaches \(k^i\) vertices – requires time \(ck^i\) for some constant \(c\)
• Iterative Deepening DFS(d) =

 \[
 \sum_{i=1}^{d} k^i = O(k^d) \quad \text{ignore low order terms!}
 \]

 BFS = \(O(k^d)\)

(More) Conclusions

• To find a shortest path between two nodes in a unweighted graph where no heuristic function is known, use either BFS or Iterated DFS
• If the graph is large, Iterated DFS typically uses much less memory
• If a good heuristic function is known, use A*
 - But what about memory requirements for A* for very large graphs?!!!

(Final?) Conclusions & Questions

• In the worst case A* can also require a (priority) queue of size exponential in \(d\), the distance to the goal vertex
• Question: Can one create an iterated, depth-first version of A* that (typically) uses less memory?
 - Yes, but you’ll have to wait until you take CSE 473, Introduction to Artificial Intelligence to see it!
• Related Question: How can we adapt Iterated DFS for weighted graphs, in order to get an algorithm that is more memory efficient than Dijkstra’s?
Counting Connected Components

Initialize the cost of each vertex to ∞
Num_cc = 0
While there are vertices of cost ∞
 Pick an arbitrary such vertex S, set its cost to 0
 Find paths from S
 Num_cc ++

Using DFS

Set each vertex to “unvisited”
Num_cc = 0
While there are unvisited vertices
 Pick an arbitrary such vertex S
 Perform DFS from S, marking vertices as visited
 Num_cc ++

Complexity = $O(\lvert V \rvert + \lvert E \rvert)$

Using Union / Find

Put each node in its own equivalence class
Num_cc = 0
For each edge E = <x,y>
 Union(x,y)
Return number of equivalence classes

Complexity = $O(\lvert V \rvert + \lvert E \rvert \cdot \text{ack}(\lvert E \rvert, \lvert V \rvert))$

Machine Vision: Blob Finding
Machine Vision: Blob Finding

• Matrix can be considered an efficient representation of a graph with a very regular structure
• Cell = vertex
• Adjacent cells of same color = edge between vertices
• Blob finding = finding connected components

Blob Finding

Tradeoffs

• Both DFS and Union/Find approaches are (essentially) $O(|E|+|V|) = O(|E|)$ for binary images
• For each component, DFS (“recursive labeling”) can move all over the image – entire image must be in main memory
• Better in practice: row-by-row processing
 – localizes accesses to memory
 – typically 1-2 orders of magnitude faster!

High-Level Blob-Labeling

• Scan through image left/right and top/bottom
• If a cell is same color as (connected to) cell to right or below, then union them
• Give the same blob number to cells in each equivalence class

Blob-Labeling Algorithm

```plaintext
Put each cell <x,y> in it’s own equivalence class
For each cell <x,y>
    if color[x,y] == color[x+1,y] then
        Union( <x,y>, <x+1,y> )
    if color[x,y] == color[x,y+1] then
        Union( <x,y>, <x,y+1> )
    label = 0
For each root <x,y>
    blobnum[x,y] = ++ label;
For each cell <x,y>
    blobnum[x,y] = blobnum( Find(<x,y>) )
```

Spanning Tree

Spanning tree: a subset of the edges from a connected graph that:
... touches all vertices in the graph (spans the graph)
... forms a tree (is connected and contains no cycles)

Minimum spanning tree: the spanning tree with the least total edge cost.
Applications of Minimal Spanning Trees

- Communication networks
- VLSI design
- Transportation systems
- Good approximation to some NP-hard problems (more later)

Kruskal’s Algorithm for Minimum Spanning Trees

A greedy algorithm:

Initialize all vertices to unconnected

While there are still unmarked edges

Pick a lowest cost edge \(e = (u, v) \) and mark it

If \(u \) and \(v \) are not already connected, add \(e \) to the minimum spanning tree and connect \(u \) and \(v \)

Sound familiar?

(Take maze generation.)

Kruskal’s Algorithm in Action (1/5)

Kruskal’s Algorithm in Action (2/5)

Kruskal’s Algorithm in Action (3/5)

Kruskal’s Algorithm in Action (4/5)
Why Greediness Works

Proof by contradiction that Kruskal’s finds a minimum spanning tree:

- Assume another spanning tree has lower cost than Kruskal’s.
- Pick an edge $e_1 = (u, v)$ in that tree that’s not in Kruskal’s.
- Consider the point in Kruskal’s algorithm where u’s set and v’s set were about to be connected. Kruskal selected some edge to connect them: call it e_2.
 - But, e_2 must have at most the same cost as e_1 (otherwise Kruskal would have selected it instead).
 - So, swap e_2 for e_1 (at worst keeping the cost the same)
- Repeat until the tree is identical to Kruskal’s, where the cost is the same or lower than the original cost: contradiction!

Data Structures for Kruskal’s Algorithm

<table>
<thead>
<tr>
<th>E</th>
<th>times:</th>
<th>Pick the lowest cost edge…</th>
<th>Initialize heap of edges…</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>times:</td>
<td>If u and v are not already connected…</td>
<td>connect u and v.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>union</td>
</tr>
</tbody>
</table>

runtime: $|E| + |E| \log |E| + |E| \text{ack}(|E|,|V|)$

Prim’s Algorithm

- Can also find Minimum Spanning Trees using a variation of Dijkstra’s algorithm:
 - Pick a initial node
 - Until graph is connected:
 - Choose edge (u,v) which is of minimum cost among edges where u is in tree but v is not
 - Add (u,v) to the tree
 - Same “greedy” proof, same asymptotic complexity

Does Greedy Always Work?

- Consider the following problem:
 - Given a graph $G = (V,E)$ and a designated subset of vertices S, find a minimum cost tree that includes all of S
 - Exactly the same as a minimum spanning tree, except that it does not have to include ALL the vertices – only the specified subset of vertices.
 - Does Kruskal’s or Prim’s work?
Nope!

- Greedy can fail to be optimal
 - because different solutions may contain different “non-designated” vertices, proof that you can covert one to the other doesn’t go through
- This Minimum Steiner Tree problem has no known solution of $O(n^k)$ for any fixed k
 - NP-complete problems strike again!
 - Finding a spanning tree and then pruning it a pretty good approximation

Some other NP-Complete Problems

If you see one: approximate or search (maybe A^*), and be prepared to wait…

- Traveling Salesman – given a complete weighted graph, find a minimum cost simple cycle of all the nodes.
- Graph Coloring – can each node in a graph be given a color from a set of k colors, such that no adjacent nodes receive the same color?

A Great Book You Should Own!