CSE 326: Data Structures
Sorting It All Out

Henry Kautz
Winter Quarter 2002

Calendar
• Today: Finish Sorting
 – Read Weiss Ch 7 (skip 7.8)
• Friday, Feb. 15th: Disjoint Sets & Union Find
 – Read Weiss Ch 6
 – Some written homework problems to be due Wednesday, Feb. 20th
• Monday, Feb. 18th: President’s Day, no class
• Wednesday, Feb. 20th: Graph Algorithms
 – Weiss Ch 9 + additional material from lecture notes
 – Several lectures
• Monday, Feb. 25th: Word-counting project due
• Various specialized data structures & algorithms
 – Mergeable heaps, quad-trees, Huffman codes, …
• Friday, March 8th: final written homework due
• Friday, March 15th: Last day of class
 – Final programming project – building and solving mazes – due

Sorting HUGE Data Sets
• US Telephone Directory:
 – 300,000,000 records
 • 64-bytes per record
 – Name: 32 characters
 – Address: 54 characters
 – Telephone number: 10 characters
 – About 2 gigabytes of data
 – Sort this on a machine with 128 MB RAM…
• Other examples?

MergeSort Good for Something!
• Basis for most external sorting routines
• Can sort any number of records using a tiny amount of main memory
 – in extreme case, only need to keep 2 records in memory at any one time!

External MergeSort
• Split input into two “tapes” (or areas of disk)
• Merge tapes so that each group of 2 records is sorted
• Split again
• Merge tapes so that each group of 4 records is sorted
• Repeat until data entirely sorted

Better External MergeSort
• Suppose main memory can hold M records.
• Initially read in groups of M records and sort them (e.g. with QuickSort).
• Number of passes reduced to \(\log(N/M) \)
Sorting by Comparison: Summary

- Sorting algorithms that only compare adjacent elements are $\Theta(N^2)$ worst case – but may be $\Theta(N)$ best case.
- HeapSort and MergeSort - $\Theta(N \log N)$ both best and worst case.
- QuickSort $\Theta(N^2)$ worst case but $\Theta(N \log N)$ best and average case.
- Any comparison-based sorting algorithm is $\Omega(N \log N)$ worst case.
- External sorting: MergeSort with $\Omega(\log N/M)$ passes.

But not quite the end of the story...

BucketSort

- If all keys are 1…K
- Have array of K buckets (linked lists).
- Put keys into correct bucket of array
 - linear time!
- BucketSort is a stable sorting algorithm:
 - Items in input with the same key end up in the same order as when they began.
- Impractical for large K...

RadixSort

- Radix = “The base of a number system” (Webster’s dictionary)
 - alternate terminology: radix is number of bits needed to represent 0 to base-1; can say “base 8” or “radix 3”.
- Used in 1890 U.S. census by Hollerith.
- Idea: BucketSort on each digit, bottom up.

The Magic of RadixSort

- Input list:
 126, 328, 636, 341, 416, 131, 328
- BucketSort on lower digit:
 341, 131, 126, 636, 416, 328, 328
- BucketSort result on next-higher digit:
 416, 126, 328, 328, 131, 636, 341
- BucketSort that result on highest digit:
 126, 131, 328, 328, 341, 416, 636

Inductive Proof that RadixSort Works

- Keys: K-digit numbers, base B
 - (that wasn’t hard!)
- Claim: after ith BucketSort, least significant i digits are sorted.
 - Base case: $i=0$. 0 digits are sorted.
 - Inductive step: Assume for i, prove for $i+1$.
 Consider two numbers: X, Y. Say X_i is ith digit of X.
 - $X_i < Y_i$, then ith BucketSort will put them in order
 - $X_i > Y_i$, same thing
 - $X_i = Y_i$, order depends on last i digits. Induction hypothesis says already sorted for these digits because BucketSort is stable.

Running time of Radixsort

- N items, K digit keys in base B
- How many passes?
- How much work per pass?
- Total time?
Running time of Radixsort

• N items, K digit keys in base B
• How many passes? K
• How much work per pass? N + B
 – just in case B>N, need to account for time to empty out buckets between passes
• Total time? O(K(N+B))

RadixSorting Strings example

<table>
<thead>
<tr>
<th>String 1</th>
<th>5th pass</th>
<th>4th pass</th>
<th>3rd pass</th>
<th>2nd pass</th>
<th>1st pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>String 2</td>
<td>z</td>
<td>i</td>
<td>p</td>
<td>p</td>
<td>y</td>
</tr>
<tr>
<td>String 3</td>
<td>a</td>
<td>n</td>
<td>t</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>String 4</td>
<td>f</td>
<td>l</td>
<td>a</td>
<td>p</td>
<td>s</td>
</tr>
</tbody>
</table>

So what?

• Optimizing use of cache can make programs way faster
• One TA made RadixSort 2x faster, rewriting to use cache better!
• Not just for sorting

Evaluating Sorting Algorithms

• What factors other than asymptotic complexity could affect performance?
• Suppose two algorithms perform exactly the same number of instructions. Could one be better than the other?

Example Memory Hierarchy Statistics

<table>
<thead>
<tr>
<th>Name</th>
<th>Extra CPU cycles used to access</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 (on chip)</td>
<td>0</td>
<td>32 KB</td>
</tr>
<tr>
<td>L2 cache</td>
<td>8</td>
<td>512 KB</td>
</tr>
<tr>
<td>RAM</td>
<td>35</td>
<td>256 MB</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>500,000</td>
<td>8 GB</td>
</tr>
</tbody>
</table>

The Memory Hierarchy Exploits Locality of Reference

• Idea: small amount of fast memory
• Keep frequently used data in the fast memory
• LRU replacement policy
 – Keep recently used data in cache
 – To free space, remove Least Recently Used data

The Memory Hierarchy Exploits Locality of Reference

• Idea: small amount of fast memory
• Keep frequently used data in the fast memory
• LRU replacement policy
 – Keep recently used data in cache
 – To free space, remove Least Recently Used data
Cache Details (simplified)

Traversing an Array

• One miss for every 4 accesses in a traversal

Iterative MergeSort

Iterative MergeSort – cont’d

“Tiled” MergeSort – better

“Tiled” MergeSort – cont’d
QuickSort
- Initial partition causes a lot of cache misses
- As subproblems become smaller, they fit into cache
- Good cache performance

Radix Sort – Very Naughty
- On each BucketSort
 - Sweep through input list – cache misses along the way (bad!)
 - Append to output list – indexed by pseudo-random digit (ouch!)

Instruction Count

Cache Misses

Sorting Execution Time

Conclusions
- Speed of cache, RAM, and external memory has a huge impact on sorting (and other algorithms as well)
- Algorithms with same asymptotic complexity may be best for different kinds of memory
- Tuning algorithm to improve cache performance can offer large improvements (iterative vs. tiled mergesort)