CSE 326: Data Structures
Lecture #12
Hashing II

Henry Kautz
Winter 2002

Load Factor in Linear Probing
- For any \(\lambda < 1 \), linear probing will find an empty slot.
- Search cost (for large table sizes):
 - Successful search:
 \[
 \frac{1}{2}\left(1 + \frac{1}{1-\lambda}\right)
 \]
 - Unsuccessful search:
 \[
 \frac{1}{2}\left(1 + \frac{1}{(1-\lambda)^2}\right)
 \]
- Performance quickly degrades for \(\lambda > 1/2 \)

Open Addressing II: Quadratic Probing
- Main Idea: Spread out the search for an empty slot – Increment by \(i^2 \) instead of \(i \)
- \(h_i(X) = (\text{Hash}(X) + i^2) \mod \text{TableSize} \)
 - \(h_0(X) = \text{Hash}(X) \mod \text{TableSize} \)
 - \(h_1(X) = \text{Hash}(X) + 1 \mod \text{TableSize} \)
 - \(h_2(X) = \text{Hash}(X) + 4 \mod \text{TableSize} \)
 - \(h_3(X) = \text{Hash}(X) + 9 \mod \text{TableSize} \)

Linear Probing – Expected # of Probes

<table>
<thead>
<tr>
<th>Load factor</th>
<th>failure</th>
<th>success</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>1.11</td>
<td>1.06</td>
</tr>
<tr>
<td>.2</td>
<td>1.28</td>
<td>1.13</td>
</tr>
<tr>
<td>.3</td>
<td>1.52</td>
<td>1.21</td>
</tr>
<tr>
<td>.4</td>
<td>1.89</td>
<td>1.33</td>
</tr>
<tr>
<td>.5</td>
<td>2.5</td>
<td>1.50</td>
</tr>
<tr>
<td>.6</td>
<td>3.6</td>
<td>1.75</td>
</tr>
<tr>
<td>.7</td>
<td>6.0</td>
<td>2.17</td>
</tr>
<tr>
<td>.8</td>
<td>13.0</td>
<td>3.0</td>
</tr>
<tr>
<td>.9</td>
<td>50.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Open Addressing II: Quadratic Probing

<table>
<thead>
<tr>
<th>Insertions</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 (\mod 7 = 0)</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Problems With Quadratic Probing

<table>
<thead>
<tr>
<th>Insertions</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 (\mod 7 = 0)</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Quadratic Probing Example

Probes:
1 1 3 1
Load Factor in Quadratic Probing

- **Theorem**: If TableSize is prime and $\lambda \leq \frac{1}{2}$, quadratic probing will find an empty slot; for greater λ, might not
- With load factors near $\frac{1}{2}$ the expected number of probes is about 1.5
- Don’t get clustering from similar keys (primary clustering), still get clustering from identical keys (secondary clustering)

Open Addressing III: Double Hashing

- **Idea**: Spread out the search for an empty slot by using a second hash function
 - No primary or secondary clustering
 - $h_i(X) = (Hash_i(X) + i \cdot Hash_2(X)) \mod \text{TableSize}$
 - for $i = 0, 1, 2, \ldots$
 - Good choice of $Hash_2(X)$ can guarantee does not get “stuck” as long as $\lambda < 1$
 - Integer keys:
 - $Hash_{prim}(X) = R - (X \mod R)$
 - where R is a prime smaller than TableSize

Double Hashing Example

<table>
<thead>
<tr>
<th>insert(14)</th>
<th>insert(8)</th>
<th>insert(21)</th>
<th>insert(2)</th>
<th>insert(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>8</td>
<td>21</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

probes: 1 1 2 1 ??

Load Factor in Double Hashing

- For any $\lambda < 1$, double hashing will find an empty slot (given appropriate table size and $Hash_2$)
- Search cost appears to approach optimal (random hash):
 - successful search: $\frac{1}{\lambda} \ln \frac{1}{1-\lambda}$
 - unsuccessful search: $\frac{1}{1-\lambda}$
- No primary clustering and no secondary clustering
- Becomes very costly as λ nears 1. In practice, slower than quadratic probing if $\lambda \leq \frac{1}{2}$.

Deletion with Separate Chaining

Why is this slide blank?
Deletion in Open Addressing

```
delete(2) find(7)
0 1 2 3 4 5 6
0 1 2 3 4 5 6
```

Where is it?!

What should we do instead?

Lazy Deletion

```
delete(2) find(7)
0 1 2 3 4 5 6
0 1 2 3 4 5 6
```

Indicates deleted value: if you find it, probe again

But now what is the problem?

The Squished Pigeon Principle

- An insert using open addressing cannot work with a load factor of 1 or more.
 - Quadratic probing can fail if \(\lambda > \frac{1}{2} \)
 - Linear probing and double hashing slow if \(\lambda > \frac{1}{2} \)
 - Lazy deletion never frees space
- Separate chaining becomes slow once \(\lambda > 1 \)
 - Eventually becomes a linear search of long chains
- How can we relieve the pressure on the pigeons?

REHASH!

Rehashing Example

Separate chaining
\(h_1(x) = x \mod 5 \) rehashes to \(h_2(x) = x \mod 11 \)

```
λ=1
0 1 2 3 4
25 37 85 52 98
λ=5/11
0 1 2 3 4 5 6 7 8 9 10
25 37 83 52 98
```

Stretchy Stack Amortized Analysis

- Consider sequence of \(n \) operations
 - push(3); push(19); push(2); …
- What is the max number of stretches? \(\log n \)
- What is the total time?
 - Let’s say a regular push takes time \(a \), and stretching an array contain \(k \) elements takes time \(bk \).

\[
\begin{align*}
an + b(1 + 2 + 4 + 8 + \ldots + n) &= an + b \sum_{i=0}^{\log n} 2^i \\
&= an + b(2n - 1)
\end{align*}
\]

- Amortized time = \((an+b(2n-1))/n = O(1) \)

Rehashing Amortized Analysis

- Consider sequence of \(n \) operations
 - insert(3); insert(19); insert(2); …
- What is the max number of rehashes? \(\log n \)
- What is the total time?
 - Let’s say a regular hash takes time \(a \), and rehashing an array contain \(k \) elements takes time \(bk \).

\[
\begin{align*}
an + b(1 + 2 + 4 + 8 + \ldots + n) &= an + b \sum_{i=0}^{\log n} 2^i \\
&= an + b(2n - 1)
\end{align*}
\]

- Amortized time = \((an+b(2n-1))/n = O(1) \)
Rehashing without Stretching

- Suppose input is a mix of inserts and deletes
 - Never more than TableSize/2 active keys
 - Rehash when \(\lambda = 1 \) (half the table must be deletions)

- Worst-case sequence:
 - \(T/2 \) inserts, \(T/2 \) deletes, \(T/2 \) inserts, Rehash, \(T/2 \) deletes, \(T/2 \) inserts, Rehash, …

- Rehashing at most doubles the amount of work – still \(O(1) \)

Case Study

- Spelling dictionary
 - 30,000 words
 - static arbitrary(ish) preprocessing time

- Goals
 - fast spell checking
 - minimal storage

- Practical notes
 - almost all searches are successful
 - words average about 8 characters in length
 - 30,000 words at 8 bytes/word is 1/4 MB
 - pointers are 4 bytes
 - there are many regularities in the structure of English words

Solutions

- Solutions
 - sorted array + binary search
 - separate chaining
 - open addressing + linear probing

Storage

- Assume words are strings and entries are pointers to strings

 - Array + binary search
 - Separate chaining
 - Open addressing

 \[
 \text{table size} + 2n \text{ pointers} = \frac{n}{\lambda} + 2n
 \]

Analysis

- Binary search
 - storage: \(n \) pointers + words \(= 360 \text{KB} \)
 - time: \(\log_2 n \leq 15 \) probes per access, worst case

- Separate chaining
 - storage: \(2n + n\lambda \) pointers + words \((\lambda = 1 \Rightarrow 600 \text{KB}) \)
 - time: \(1 + \lambda/2 \) probes per access on average \((\lambda = 1 \Rightarrow 1.5) \)

- Open addressing
 - storage: \(n\lambda \) pointers + words \((\lambda = 0.5 \Rightarrow 480 \text{KB}) \)
 - time: \(\frac{1}{\lambda} \left(1 - \frac{1}{\lambda-1}\right) \) probes per access on average \((\lambda = 0.5 \Rightarrow 1.5) \)

A Random Hash…

- Universal hashing
 - Given a particular input, pick a hash function parameterized by some random number
 - Useful in proving average case results – instead of randomizing over inputs, randomize over choice of hash function

- Minimal perfect hash function: one that hashes a given set of \(n \) keys into a table of size \(n \) with no collisions
 - Always exist
 - Might have to search large space of parameterized hash functions to find
 - Application: compilers

- One-way hash functions
 - Used in cryptography
 - Hard (intractable) to invert: given just the hash value, recover the key

Which one should we use?
Coming Up

- Wednesday: Nick leads the class
- Try all the homework problems BEFORE Thursday, so you can ask questions in section!
- Friday: Midterm