Dictionary & Search ADTs

- **Operations**
 - create
 - destroy
 - insert
 - find
 - delete

- **Dictionary**: Stores values associated with user-specified keys
 - keys may be any (homogeneous) comparable type
 - values may be any (homogeneous) type
 - implementation: data field is a struct with two parts

- **Search ADT**: keys = values

Hash Tables: Basic Idea

- Use a key (arbitrary string or number) to index directly into an array – O(1) time to access records
 - A[“kreplash”] = “tasty stuffed dough”
 - Need a hash function to convert the key to an integer

<table>
<thead>
<tr>
<th>Key</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>kim chi – spicy cabbage</td>
</tr>
<tr>
<td>1</td>
<td>kreplash – tasty stuffed dough</td>
</tr>
<tr>
<td>2</td>
<td>kiwi – Australian fruit</td>
</tr>
</tbody>
</table>

Midterm

- Friday February 8th
- Will cover everything through hash tables
- Weiss Chapters 1 – 5
- 50 minutes, in class
- You may bring one page of notes to refer to

Implementations So Far

<table>
<thead>
<tr>
<th></th>
<th>unsorted list</th>
<th>sorted array</th>
<th>Trees</th>
<th>Array of size n where keys are 0,…,n-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(log n)</td>
<td></td>
</tr>
<tr>
<td>find</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td></td>
</tr>
<tr>
<td>delete</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(log n)</td>
<td></td>
</tr>
</tbody>
</table>

Applications

- When log(n) is just too big…
 - Symbol tables in interpreters
 - Real-time databases (in core or on disk)
 - air traffic control
 - packet routing
- When associative memory is needed…
 - Dynamic programming
 - cache results of previous computation
 - if Find(x) then Find(x) else f(x)
 - Chess endgames
 - Many text processing applications – e.g. Web
 - $\text{Status}[\text{LastURL}] = \text{visited}$;
How could you use hash tables to…

- Convert a document to a Sparse Boolean Vector?
- Create an index for a book?
- Implement a linked list?

Properties of Good Hash Functions

- Must return number 0, …, tablesiz
 - Easy: modulo arithmetic – always end in “% tablesiz”
- Should be efficiently computable – O(1) time
- Should not waste space unnecessarily
 - For every index, there is at least one key that hashes to it
 - Load factor lambda \(\lambda = \text{(number of keys / TableSize)} \)
- Should minimize collisions
 - different keys hashing to same index

Integer Keys

- Hash(x) = x % TableSize
- Good idea to make TableSize prime. Why?

Integer Keys

- Hash(x) = x % TableSize
- Good idea to make TableSize prime. Why?
 - Because keys are typically not randomly distributed, but usually have some pattern
 - mostly even
 - mostly multiples of 10
 - in general: mostly multiples of some k
 - If k is a factor of TableSize, then only (TableSize/k) slots will ever be used!
 - Since the only factor of a prime number is itself, this phenomena only hurts in the (rare) case where k=TableSize

Strings as Keys

- If keys are strings, can get an integer by adding up ASCII values of characters in key
  ```
  while (*key != '\0')
    StringValue += *key++;
  ```
- Problem 1: What if TableSize is 10,000 and all keys are 8 or less characters long?
- Problem 2: What if keys often contain the same characters (“abc”, “bca”, etc.)?

Hashing Strings

- Basic idea: consider string to be a integer (base 128):
 Hash(“abc”) = (‘a’*128^2 + ‘b’*128^1 + ‘c’) % TableSize
- Range of hash large, anagrams get different values
- Problem: although a char can hold 128 values (8 bits), only a subset of these values are commonly used (26 letters plus some special characters)
 - So just use a smaller “base”
 - Hash(“abc”) = (‘a’*32^2 + ‘b’*32^1 + ‘c’) % TableSize
Making the String Hash Easy to Compute

- Horner’s Rule

  ```cpp
  int hash(String s) {
    h = 0;
    for (i = s.length() - 1; i >= 0; i--)
    {
      h = (s[i] + h << 5) % tableSize;
    }
    return h;
  }
  
  Advantages:
  ```

How Can You Hash…

- A pointer?
  ```cpp
  ((int) p) % TableSize
  ```

- A set of values – (name, birthday)?
  ```cpp
  (Hash1(name) + Hash2(birthdate)) % TableSize
  ```

Collisions and their Resolution

- A collision occurs when two different keys hash to the same value
 - E.g. For TableSize = 17, the keys 18 and 35 hash to the same value
 - 18 mod 17 = 1 and 35 mod 17 = 1
- Cannot store both data records in the same slot in array!
- Two different methods for collision resolution:
 - Separate Chaining: Use a dictionary data structure (such as a linked list) to store multiple items that hash to the same slot
 - Open addressing (or probing): search for empty slots using a second function and store item in first empty slot that is found

A Rose by Any Other Name…

- Separate chaining = Open hashing
- Open addressing = Closed hashing

Hashing with Separate Chaining

- Put a little dictionary at each entry
 - choose type as appropriate
 - common case is unordered linked list (chain)
- Properties
 - performance degrades with length of chains
 - \(\lambda \) can be greater than 1
Load Factor with Separate Chaining

- Search cost
 - unsuccessful search:
 - successful search:
- Optimal load factor:

Load Factor with Separate Chaining

- Search cost
 - unsuccessful search:
 - Whole list – average length λ
 - successful search:
 - Half the list – average length $\lambda/2 + 1$
- Optimal load factor:
 - Zero! But between $\frac{1}{2}$ and 1 is fast and makes good use of memory.

Alternative Strategy: Open Addressing

Problem with separate chaining:
- Memory consumed by pointers – 32 (or 64) bits per key!

What if we only allow one Key at each entry?
- two objects that hash to the same spot can’t both go there
- first one there gets the spot
- next one must go in another spot

- Properties
 - $h \leq 1$
 - performance degrades with difficulty of finding right spot

Question to Think About for Monday

- What is an application where it is a good idea to use open addressing and not do probing – you just allow collisions to occur?

Collision Resolution by Open Addressing

- Given an item X, try cells $h_0(X)$, $h_1(X)$, $h_2(X)$, ..., $h_i(X)$
- $h_i(X) = (\text{Hash}(X) + F(i)) \mod \text{Table Size}$
 - Define $F(0) = 0$
- F is the collision resolution function. Three possibilities:
 - Linear: $F(i) = i$
 - Quadratic: $F(i) = i^2$
 - Double Hashing: $F(i) = i \cdot \text{Hash}_2(X)$

Open Addressing I: Linear Probing

- Main Idea: When collision occurs, scan down the array one cell at a time looking for an empty cell
 - $h_i(X) = (\text{Hash}(X) + i) \mod \text{Table Size} \quad (i = 0, 1, 2, ...)$
 - Compute hash value and increment it until a free cell is found
Linear Probing Example

<table>
<thead>
<tr>
<th></th>
<th>insert(14)</th>
<th>insert(8)</th>
<th>insert(21)</th>
<th>insert(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14%7</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>8%7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>21%7</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>2%7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Probes: 1 1 3 2

Drawbacks of Linear Probing

- Works until array is full, but as number of items N approaches $TableSize (λ = 1)$, access time approaches $O(N)$
- Very prone to cluster formation (as in our example)
 - If a key hashes *anywhere* into a cluster, finding a free cell involves going through the entire cluster – and making it grow!
 - Primary clustering – clusters grow when keys hash to values close to each other
- Can have cases where table is empty except for a few clusters
 - Does not satisfy good hash function criterion of *distributing keys uniformly*

Load Factor in Linear Probing

- For any $λ < 1$, linear probing will find an empty slot
- Search cost (for large table sizes)
 - successful search: $\frac{1}{2} \left(1 + \frac{1}{1-λ} \right)$
 - unsuccessful search: $\frac{1}{2} \left(1 + \frac{1}{1-λ^2} \right)$
- Performance quickly degrades for $λ > 1/2$

Open Addressing II: Quadratic Probing

- Main Idea: Spread out the search for an empty slot – Increment by i^2 instead of i

- $h_1(X) = (Hash(X) + i^2) \mod TableSize$
 - $h_0(X) = Hash(X) \mod TableSize$
 - $h_1(X) = Hash(X) + 1 \mod TableSize$
 - $h_2(X) = Hash(X) + 4 \mod TableSize$
 - $h_3(X) = Hash(X) + 9 \mod TableSize$

Quadratic Probing Example

<table>
<thead>
<tr>
<th></th>
<th>insert(14)</th>
<th>insert(8)</th>
<th>insert(21)</th>
<th>insert(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14%7</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>8%7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>21%7</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>2%7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Probes: 1 1 3 1

Problem With Quadratic Probing

<table>
<thead>
<tr>
<th></th>
<th>insert(14)</th>
<th>insert(8)</th>
<th>insert(21)</th>
<th>insert(2)</th>
<th>insert(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14%7</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>8%7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>21%7</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>2%7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Probes: 1 1 3 1 ??
Load Factor in Quadratic Probing

- **Theorem:** If TableSize is prime and $\lambda \leq \frac{1}{2}$, quadratic probing will find an empty slot; for greater λ, might not
- With load factors near $\frac{1}{2}$ the expected number of probes is about 1.5
- Don’t get clustering from *similar* keys (primary clustering), still get clustering from *identical* keys (secondary clustering)

Monday

- Double hashing
- Deletion and rehashing
- Analysis of memory use
- Universal hash functions
- Perfect hashing
- and answer to the PUZZLER: What is an application where it is a good idea to use open addressing and not do probing – you just allow collisions to occur?