Move-to-Front Heuristic

- Search for Pebbles:

- Move found item to front of list
- Frequently searched items will move to start of list
 - Effective both theoretically and practically

Splaying

Splay(12)
Gettin’ Down: Step 1

Splay(12)

Remember the path to the node

Know Who Begot You

Splay(12)

Look at Parent and Grandparent

Splay Case 1

Splay(12)

Rotate Left 7, Rotate Left 10
Splay Case 2

Splay(12)

Rotate Left 6, Rotate Left 13

Splay Case 3

Splay(12)

Rotate Left 2

Splay Cases
All Dressed Up

Splay(k) Splay *k*, or predecessor or successor to *k*, to root, depending if *k* is in the tree.

Insert(k) *Splay*(k), then update

Delete(k) *Splay*(k), if root is *k*, then remove it, and Concat(A, B)

Concatenation

Concatenation

Concat(T₁, T₂): *Splay*(+∞, T₁), then join T₂ as right child of T₁.

Example

Example
Amortized Analysis

- Splaying is the expensive operation
- Sometimes we do more than $O(\log n)$ work per node . . .
- Sometimes we do less than $O(\log n)$ work per node . . .
- But it balances out: m operations in a tree with at most n nodes takes $O(m \log n)$ time!
- Easy to say, harder to prove

Worst-Case Analysis

Time = Money

We proved we needed to spend at most $\log n + 4$ time per AVL insertion
Worst-Case Analysis

If the insertion was easy, our analysis loses

Amortized Analysis

If the splay was easy, bank the left-over money

Amortized Analysis

If the splay was hard, use money from the bank
Amortized Analysis

- Always invest $3\log n + 1$ per splay
- Prove there’s always enough money in the bank for any operation
- Then $O(m \log n)$ time to do m operations

Store Money in the Tree

$r(v) = \lceil \log \text{size of subtree at } v \rceil$

Ranks are Logarithms

Rank of parent at least that of any child, but sometimes not greater.
Ranks are Logarithms

If both children have the same rank, then the rank of the parent is larger.

The Money Invariant

- Each node v has $r(v)$ dollars.
- If v moves up, add more money to v.

 $r'(v) > r(v)$
- If v moves down, take money from v.

 $r'(v) < r(v)$

The Cost of Splaying: I

- Always the last step.
- Only ranks of P and Q change.
- $r'(P) = r(Q)$.
- Get $r(P)$ dollars.
- Need $r'(Q) \leq r'(P)$ dollars.
- Need 1 to do the rotation.
- Total: $\leq r'(P) - r(P) + 1$.
The Cost of Splaying: II

- Need $r'(Q) + r'(R) - (r(P) + r(Q)) \leq 2(r'(P) - r(P))$
- If $r'(P) > r(P)$, then $3(r'(P) - r(P))$ is enough to pay for the rotation, too
- Otherwise, $r'(P) = r(P)$, so do we need 1 to pay for the rotation?

The Cost of Splaying

- If we pay 1 for each case II, could pay $\Theta(n)$, and we need $O(\log n)$
- If cost only depends on rank difference, we'll be okay:

\[
3(r^{(1)}(P) - r(P)) + 3(r^{(2)}(P) - r^{(1)}(P)) + 3(r^{(3)}(P) - r^{(2)}(P)) + \ldots + 3(r^{(k)}(P) - r^{(k-1)}(P)) + 1
= 3(r^{(k)}(P) - r(P)) + 1
\leq 3\log n + 1
\]

The Cost of Splaying: II

- If $r'(P) = r(P)$, then
 * $r'(R) < r(P)$
 * Otherwise $r'(R) > r(P)$
 * $r'(Q) \leq r'(P) = r(P) \leq r(Q)$
 * R's $S \Rightarrow P$
 * P's $S \Rightarrow R$, with extra to pay for rotation
The Cost of Splaying: III

- R's $ ⇒ new P
- Q's $ stays put
 (may waste some)
- P's $ ⇒ new R, and pay \(r'(P) - r(P) \)
 extra $s
- If \(r'(P) > r(P) \), we're within
 \(3(r'(P) - r(P)) \) after paying for
 rotation
- If \(r'(P) = r(P) \), then
 * \(r'(P) = r(P) = r(Q) = r(R) \)
 * Hence \(r'(Q) < r'(P) \) or
 \(r'(R) < r'(P) \), otherwise
 \(r'(P) > r(P) \)
 * So \(r'(Q) < r(Q) \) or \(r'(R) < r(P) \),
 and can use extra $ to pay for
 rotation

So What Does It All Mean?

If we perform \(m \) operations an have at most \(n \) nodes:

- Any Splay(\(K \)) needs at most \(3|\log n| + 1 \) $ to maintain
 money invariant

- Any lookup or delete performs at most 2 splays: at most
 $(6|\log n| + 2)$

- Any insert performs 1 splay, plus money for the new root:
 at most $(4|\log n|)$

- \(O(m \log n) \) dollars total needed—matches AVL trees!