17—Minimum Spanning Trees and Kruskal’s Algorithm

May 19, 2002

Subgraphs

- Cities and edges form a graph
- Cities and red edges form a subgraph
- Weighted graphs have a value: $\text{value}(G) = \sum_{e \in E} \text{weight}(e)$

A Graph Problem

G: a weighted graph

What is the cheapest, connected subgraph of G?
How to Find Spanning Trees

Two Greedy Algorithms

Prim's Algorithm

Almost the same as Dijkstra's

Kruskal's Algorithm

Totally different!

Kruskal's Algorithm (Almost)

Key idea: We like short edges

Kruskal's Algorithm (Almost)

Kruskal(Graph G)
{
 Graph MST;
 PQ pq.Build(G.edges());
 while (num components > 1) {
 Edge e = pq.DeleteMin();
 if (e does not make a cycle)
 MST.Add(e);
 }
 return MST;
}
Can we always extend our current tree to some MST after choosing any valid minimum-cost edge?

- G is our current forest
- e is the valid minimum-cost edge we're going to add
- Assuming there is an extension from G to a MST, how do we know e is in that extension?

- G is our current forest
- $e = (u, v)$ is the valid minimum-cost edge we're going to add
- F is a minimum-cost extension of G
More Slides = Better

- \(\exists u \rightarrow v \) path \(p \) in \(F \)
 - Why?
- \(p \) has an edge \(e' \) between components of \(G \)
 - Why?
- \(\text{weight}(e) \leq \text{weight}(e') \)
 - Why?

Yes, More Slides = Better

- \(\text{value}(F - e' + e) \leq \text{value}(F) \)
 - Why?
- \(F - e' + e \) is a tree
 - Why?
- Hence \(G + e \) can be extended to an MST
 - Yay!

Implementing Kruskal's

```java
Kruskal(Graph G) {
    Graph MST;
    PQ pq.Build(G.edges());
    while (num components > 1) {
        Edge e = pq.DeleteMin();
        if (e does not make a cycle) MST.Add(e);
    }
    return MST;
}
```

Which part is hard?
Disjoint Sets

- Components are sets
- \(e = (u, v) \) won't cause cycle if sets containing \(u \) and \(v \) are disjoint
- If we add \(e \), union the sets containing \(u \) and \(v \)

Just like mazes

Kruskal Implementation

```cpp
Kruskal(Graph G) {
    Graph MST;
    PQ pq.Build(G.edges());
    DS ds.MakeSets(G.num_vertices());
    int components = G.num_vertices();
    while ( ) {
        Edge e = pq.DeleteMin();
        DS::Set *u = ds.Find(e->u->Number());
        DS::Set *v = ds.Find(e->v->Number());
        if ( ) {
            MST.Add(e);
        }
    }
    return MST;
}
```

Disjoint Set Implementation

```cpp
class DS {
    class Set {
        ...
    };

    public:
    class Set;
    void Union(Set *, Set *);
    Set *Find(Set *);
    void MakeSets(int n) {
    }
    Set *Find(int) {
    }
};
```
Running Time?

Kruskal(Graph G)
{
 Graph MST;
PQ pq.Build(G.edges());
 DS ds.MakeSets(G.num_vertices());
 int components = G.num_vertices();
 while (components > 1) {
 Edge e = pq.DeleteMin();
 DS::Set *u = ds.Find(e->u->Number());
 DS::Set *v = ds.Find(e->v->Number());
 if (u != v) {
 MST.Add(e);
 ds.Union(u,v);
 components--;
 }
 }
 return MST;
}