16—Shortest Paths and Dijkstra's Algorithm

May 17, 2002

Weighted Graphs

Quest for Food
(all distances in yards)

Serious About My Lunch

Single-Source Shortest Path

Compute shortest distance to all nodes from my desk
Dijkstra's Algorithm

Two kinds of vertices
- **Finished** vertices
 Shortest distance computed
- **Unknown** vertices
 Have *tentative* distance

At each step:
1. Pick **closest** unknown vertex
2. Add it to **finished** vertices
3. Update distances

Dijkstra's Algorithm vs. BFS

At each step:
1. Pick closest unknown vertex
2. Add it to **visited** vertices
3. Update *queue* with neighbors

<table>
<thead>
<tr>
<th>Dijkstra's Algorithm</th>
<th>BFS</th>
</tr>
</thead>
</table>
1. *Finished* vertices in the middle
2. Vectors from fringe added at each step

Dijkstra’s and BFS

Yay! Example!

- All vertices unknown
- Start vertex distance 0
- All other vertices at ∞

Initialize

At each step:
1. Pick closest unknown vertex
2. Add it to finished vertices
3. Update distances
At each step:
1. Pick closest unknown vertex
2. Add it to finished vertices
3. Update distances

Why does this work?
Why are the distances of finished vertices correct?
When Dijkstra's Wouldn't Work

Positive-only edge weights is essential

Key Lemma

We finish with the closest vertices first

If \(w \) finished immediately after \(v \), then
\[
\text{FinalDistance}(w) \geq \text{FinalDistance}(v)
\]

Inductive Proof

If \(w \) finished immediately after \(v \), then
\[
\text{FinalDistance}(w) \geq \text{FinalDistance}(v)
\]

Tentative distance of \(w \) no bigger than \(v \)'s

Updates from \(v \) may shrink distance of \(w \),
but can't get smaller than \(v \)'s distance
The Big Kahuna

Suppose \(v \)'s final distance is *not* correct

Then exists a shorter path to \(v \)
- \(\text{dist}(w) + x < \text{dist}(v) \)
- Final distances on path are correct
- \(v \) finalized *after* all other nodes on the path

Gotcha!

When \(w_k \) finalized, \(\text{dist}(v) \leftarrow \text{dist}(w) + x \)
- Final \(\text{dist}(v) \) *greater* than this
- \(\text{dist}(v) \) only *decreases* during the algorithm
- Contradiction!

A Number is Not a Path

Sure, we know how far away \(v \) is...

...but how do we *get* there?
Dijkstra(Graph G, Vertex s)
{
 PQ pq;
 for each (v in G) pq.Insert(v, INFINITY);
 pq.Change(s, 0);
 while (!pq.Empty()) {
 v = pq.DeleteMin();
 for each (w in v.Neighbors())
 if (dist(w) > dist(v) + w(v,w))
 pq.Change(w, dist(v)+w(v,w));
 }
}

Implementing the PQ
PQ as a Heap

```c
PQ::SwapUp(i)
{
    int p = (i-1)/2;
    while (p >= 0 && heap[p].key > heap[i].key) {
        swap(heap[p],heap[i]);
        i = p;
        p = (i-1)/2;
    }
}
```