DFS(Graph G, Vertex *root)
{
 for each (v in G) {
 Encountered(v) = false;
 Finished(v) = false;
 }
 int num = 1;
 RecursiveDFS(root, &num);
}

RecursiveDFS(Vertex *v, int *pn)
{
 Encountered(v) = true;
 for each (w in v->Neighbors())
 if (!Encountered(w))
 RecursiveDFS(w, pn);
 Finished(v) = true;
 for each (w in v->Neighbors())
 if (Encountered(w) && !Finished(w))
 have_cycle = true;
}

TopSort(Graph G)
{
 next_num = 1;
 for (each vertex v of G)
 in_deg(v) = v->InDegree();
 num(v) = -1;
 for (each vertex v of G)
 if (in_deg(v) == 0)
 Recurse(v);
}

Recurse(Vertex v)
{
 num(v) = next_num++;
 for (each nbr w of v)
 if (in_deg(v) == 0)
 Recurse(v);
TopSort(Graph G)
{
 next_num = G.NumVtcs;
 for (each vertex v of G)
 encountered(v) = false;
 num(v) = -1;
 for (each vertex v of G)
 if (!encountered(v))
 Recurse(v);
}

Recurse(Vertex v)
{
 encountered(v) = true;
 for (each nbr w of v)
 if (!encountered(w))
 Recurse(v);
 num(v) = next_num--;