CSE 326: Data Structures
Lecture #3
June 23, 2000
Asymptotic Analysis (continued)

Terminology

Given an algorithm whose running time is $T(n)$
- $T(n) \in O(f(n))$ if there are constants c and n_0 such that
 - $T(n) \leq c f(n)$ for all $n \geq n_0$
 - $1, \log n, n, 100n \in O(n)$
- $T(n) \in \Omega(f(n))$ if there are constants c and n_0 such that
 - $T(n) \geq c f(n)$ for all $n \geq n_0$
 - $n, n^2, 100^2 \log n \in \Omega(n)$
- $T(n) \in \Theta(f(n))$ if $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$
 - $n, 2n, 100n, 0.01n + \log n \in \Theta(n)$
 - $n, 2n, 100n, 0.01n + \log n \in \Theta(n)$
- $T(n) \in o(f(n))$ if $T(n) \in O(f(n))$ and $T(n) \not\in \Theta(f(n))$
 - $1, \log n, n^{0.99} \in o(n)$

Silicon Downs

<table>
<thead>
<tr>
<th>Post #1</th>
<th>Post #2</th>
<th>Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^3 + 2n^2$</td>
<td>$100n^2 + 1000$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>$n^{0.1}$</td>
<td>$\log n$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>$n + 100n^{0.1}$</td>
<td>$2n + 10 \log n$</td>
<td>TIE $O(n)$</td>
</tr>
<tr>
<td>$5n^n$</td>
<td>n^n</td>
<td>$O(n^n)$</td>
</tr>
<tr>
<td>$n^{1/2}/100$</td>
<td>$100n^{15}$</td>
<td>$O(n^{15})$</td>
</tr>
<tr>
<td>m^{n^3}</td>
<td>2^n</td>
<td>IT DEPENDS</td>
</tr>
</tbody>
</table>

Race I

$n^3 + 2n^2$ vs. $100n^2 + 1000$

Race II

$n^{0.1}$ vs. $\log n$

Race III

$n + 100n^{0.1}$ vs. $2n + 10 \log n$
Race IV
\[5n^5 \text{ vs. } n! \]

Race V
\[n^{-152n}/100 \text{ vs. } 1000n^{15} \]

Race VI
\[8^{2\log(n)} \text{ vs. } 3n^7 + 7n \]

FBI Finds Silicon Downs Fixed
- The fix sheet (typical growth rates in order)
 - constant: \(O(1) \)
 - logarithmic: \(O(\log n) \) (\(\log n, \log n^2 \in O(\log n) \))
 - poly-log: \(O\left(\log^2 n\right) \)
 - linear: \(O(n) \)
 - log-linear: \(O(n \log n) \)
 - superlinear: \(O(n^{1+c}) \) (c is a constant > 0)
 - quadratic: \(O(n^2) \)
 - cubic: \(O(n^3) \)
 - polynomial: \(O(n^{10}) \) (k is a constant)
 - exponential: \(O(c^n) \) (c is a constant > 1)

Types of analysis
- Orthogonal axes
 - bound flavor
 - upper bound (\(O(n) \))
 - lower bound (\(\Omega(n) \))
 - asymptotically tight (\(\Theta(n) \))
 - analysis case
 - worst case (adversary)
 - average case
 - best case
 - "common" case
 - analysis quality
 - loose bound (any true analysis)
 - tight bound (no better bound which is asymptotically different)

How Do We Justify Our Analysis?
- Code up programs and measure their behavior
 - Pro: concrete, observable
 - Con: may depend on individual computer or programmer skill or particular data set
- Techniques of mathematical proof
 - Pro: independent of individual computer, programmer skill or particular data set
 - Con: not always easy
Common Proof Techniques

- **Counterexample**
 - show an example which does not fit with the theorem
 - QED (the theorem is disproved)

- **Contradiction**
 - assume the opposite of the theorem
 - derive a contradiction
 - QED (the theorem is proven)

- **Induction**
 - **Step 1:** prove for a base case (e.g., n = 1)
 - **Step 2:** assume true for all values through some anonymous value (n)
 - **Step 3:** prove for the next value (n + 1)
 - **Step 4:** QED

 Dickey's Step –1: Convince yourself it's true!

Example for Induction Proof

- What is the sum of the 1st N integers?

Another Induction Example

- A number is divisible by 3 iff the sum of its digits is divisible by three

 - **Step –1:** What is the theorem saying? Is it really true?

 - **Base case(s):**
 - **General case(s):**

Reading for Next Reading Quiz

- **Review Chapter 2**
- **Chapter 3.1-3.2**