CSE 322

Exam Reviews
Basic Concepts

• Formal Languages
 – Alphabet (Σ)
 – String (Σ^*)
 – Length ($|x|$)
 – Empty String (ε)
 – Empty Language (\emptyset)

• Language/String Operations
 – “Regular” Operations:
 • Union (\cup)
 • Concatenation (\cdot)
 • (Kleene) Star (*)
 – Other:
 • Intersection
 • Complement
 • Reversal
 • Shuffle
 • ...
Finite Defns of Infinite Languages

- English, mathematical
- DFAs
 - States
 - Start states
 - Accept states
 - Transitions (\(\delta\) function)
 - \(M\) accepts \(w \in \Sigma^*\)
 - \(M\) recognizes \(L \subseteq \Sigma^*\)

- Nondeterminism
- NFAs
 - Transitions (\(\delta\) relation)
 - Missing out-edges
 - Multiple out-edges
 - \(\varepsilon\)-moves
 - \(N\) accepts \(w \in \Sigma^*\)
 - \(N\) recognizes \(L \subseteq \Sigma^*\)

- Regular Expressions
 - \(\emptyset, \varepsilon, a \in \Sigma, \cup, \cdot, *, ()\)

- GNFAs
Key Results, Constructions, Methods

• L is regular iff it is:
 – Recognized by a DFA
 – Recognized by a NFA
 – Recognized by a GNFA
 – Defined by a Regular Expr

Proofs:

- GNFA → Reg Expr
 (Kleene/Floyd/Warshall: $R_{ik} R_{kk}^* R_{kj}$)

- Reg Expr → NFA
 (join NFAs w/ ε-moves)

- NFA → DFA
 (subset construction)

• The class of regular languages is closed under:
 – Regular ops: union, concatenation, star
 – Also: intersection, complementation, (& reversal, prefix, no-prefix, …)

• NOT closed under \subseteq, \supseteq

• Also: Cross-product construction (union, …)
Applications

- "globbing"
 - `lpr *.txt`
- pattern-match searching:
 - `grep "Ruzzo.*terrific" *.txt`

- Compilers:
 - `Id ::= letter (letter|digit)*`
 - `Int ::= digit digit*`
 - `Float ::= d d* . d* (ε | E d d*)`
 - (but not, e.g. expressions with nested, balanced parens, or variable names matched to declarations)
- Finite state models of circuits, control systems, network protocols, API’s, etc., etc.