Pumping Lemma

A regular language L

$\exists p \quad \forall w \in L \quad |w| \geq p \Rightarrow$

$\exists x, y, z \in \Sigma^* \quad \text{s.t.}$

$w = xyz$

$y \neq \epsilon$

$|xy| \leq p$

$\forall i > 0 \quad xy^i z \in L$
Proof:

Let L be regular, then there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ accepting L. Let $p \geq |Q|$. Let w be any $w \in L$. If $|w| \leq p$, vacuous. If $|w| > p$, let q_i be the state reached after reading i letters, $1 \leq i \leq p$. Let q_i be the state reached after reading i letters of w. Then $p+1$ states for that case.
By Pigeon hole principle, \(\exists i < j \) such that \(x_i = x_j \). Let \(x = 1 \leq i \) letter of \(u \), \(y = (i+1) \) th through \(j \) th letter of \(u \), \(z = z \geq j \).

\[
\begin{align*}
M & \text{ accept } x \\
M & \text{ accept } x \ y \\
M & \text{ accept } x \ y \ z \\
\vdots \\
M & \text{ accept } x \ y \ k = 6 \ k = 0
\end{align*}
\]
\[l = \sum_{a=1}^{30} a^2 \]

Key Idea: perfect squares become increasingly sparse, but PL => at most p gap between members
\[L = \{ a^{n^2} \mid n > 0 \} \subseteq \mathbb{A} \]

Suppose \(L \) is regular. By P.L.

\[\exists p \quad \text{let } w = a^{p^2} \text{ by P.L.} \]

\[\exists xyz \text{ s.t. } w = xye \]

\[0 < |y| \leq p \]

\[xy^2z = a^{p^2} + |y| \]

\[(p+1)^2 = p^2 + 2p + 1 \]

\[p^2 + |y| \leq p^2 + p < p^2 + 2p + 1 \]

\[\therefore xy^2z \notin L \]
\[L = \{ a^n b^n | n \geq 0 \} \]

if \(L \) is regular then by P.L.
exists \(\exists p \) such ...
\[
W = a^p b^p
\]

\[\exists x, y, z \leq 3^p \]

Let \(x + y + z = w \)

\[|x| \geq 0 \]

\[|x + y| \leq p \]

\[x = -a_i \text{ for some } 0 \leq i < p \]

\[y = a_j \text{ for some } 1 \leq j \leq p \]

\[z = a^p - i - j \]

\[xy^2z = a^p + j \]

\[\therefore L \text{ is not regular} \]
\[L = \{ w \mid \#a(w) = \#6(w) \} \]

\[L \cap a^* b^* = \{ a^n b^n \mid n \geq 3 \]
\text{regular}

\[\text{not regular} \]

\[\therefore \text{By closure of regular languages under intersection, } L \text{ cannot be regular.} \]