"cut and paste"

\[x \cdot y \in \mathcal{L}(M) \]

\[x' \]

\[\text{in reading on either } x \text{ or } x' \]

\[x' \cdot y \\text{ must be } \in \mathcal{L}(M) \text{ too} \]
Those who cannot remember the past are condemned to repeat it.

-- George Santayana (1905) Life of Reason

Corollary

Every sufficiently long input string forces a DFA around a loop.

Proof

let \(p = |Q| \) and \(1 \leq p \).

Let \(q_1, \ldots, q_m \) be state \(M \) in after reading \(1 \leq i \) letter of \(w \).

By pigeonhole principle, \(\exists 0 \leq i < j \leq |W| \) at \(q_i = q_j \).
Pumping Lemma

A regular language \(L \)

\[\exists p \quad \forall w \in L \quad |w| \geq p \Rightarrow \]

\[\exists x, y, z \in \Sigma^* \quad s.t. \]

\[w = xyz \]

\[y \neq \varepsilon \]

\[|xy| \leq p \]

\[\forall i \geq 0 \quad xy^iz \in L \]
PL suggests all regular languages are infinite!?? Surely false...

E.g. Suppose $L = \{ a^3 \}$

PL says $\exists p \forall w \in L \mid |w| > p \Rightarrow 0 \Rightarrow 0$

Well, take $p = 2$. Then, yes indeed for all strings in L of length $2r$ or greater $\exists x \in \Sigma^*$ is vacuously true, since there are no such strings in L.

Ditto for any finite language — $p = 1 + \max$ length string in L.

1606
\[L = \{ a^n b^n | n \geq 0 \} \]

If \(L \) is regular then by P.2.3

\[\exists p \text{ and } \ldots \]

\[w = a^p b^p \]

\[\exists x, y, z \in \Sigma^* \]

\[x y z = w \]

\[|x| \geq 0 \]

\[|x y| \leq p \]

\[x - a^i \text{ for some } 0 \leq i < p \]

\[y = a^j \text{ for some } 1 \leq j \leq p \]

\[z = a^{p-i-j} b^p \]

\[x y z = a^p + i b^p \in L \]

\[\therefore L \text{ is not regular.} \]