8. For languages $A, B \subseteq \Sigma^*$, define $\text{SHUFFLE}(A, B)$ to be the set

$$\{w \mid w = a_1 b_1 a_2 b_2 \cdots a_k b_k \text{ where } a_1 \cdots a_k \in A \text{ and } b_1 \cdots b_k \in B, \text{ with each } a_i, b_i \in \Sigma^*\}.$$

Show that the regular languages are closed under shuffle. Give both a short, convincing, one paragraph "proof idea" similar to those in the text, and a formal proof. Hint: A variant of the "Cartesian product" construction in Theorem 1.25 may be useful. And, yes, "induction is your friend."

Note: Read the definition carefully. It says "$a_1 \cdots a_k \in A$," not "$a_1, \ldots, a_k \in A$"; the later specifies k strings, each individually in A; the former specifies k strings, perhaps none in A, whose concatenation (in order) is a single string in A.

This works in part since, without loss of generality, every (a_i, b_i) pair has $|a_i b_i| = 1$, i.e. one is epsilon, the other a single character.
Relating edges of G' to paths in G

A path in G: any sequence of states
A simple path in G: any sequence of
 distinct states at 1st and last are not k,
 and all intermediate ones (if any) are k.

\[
\begin{align*}
 i &
 \rightarrow
 j \\
 i &
 \rightarrow
 k
 \rightarrow
 j \\
 i &
 \rightarrow
 k
 \rightarrow
 j
 \rightarrow
 j
\end{align*}
\]

The Point:

(a) every path in G can be decomposed into simple paths

(b) every edge in G', say $i \rightarrow j$,
 corresponds to the set of all
 simple paths in G with those
 end points.
Q: What strings accepted by \(L_0 \rightarrow L_1 \rightarrow L_5 \)?

\[
\{ w \mid w = x_1 x_2 \text{ with } x_1 \in L_1 \land x_2 \in L_5 \}
\]

\(L_1 \circ L_5 \)

\(L_0 \rightarrow L_5 \rightarrow L_2 \rightarrow L_7 \# \rightarrow L_2 \)

\(L_1 \circ L_2 \circ L_3 \circ L_4 \circ L_5 \)

\(L = \bigcup_{p \text{ path of } L_0} \text{concat } \text{of } L_0 \text{'s on path } p \)
Claim 2

\[L(r_{ij}) = \{ w \mid G \text{ can move from } i \text{ to } j \text{ reading } w \text{ and passing through no intermediate states except possibly } k \} \]

Equivalently:

\[L(r'_{ij}) = \{ w \mid G \text{ can move from } i \text{ to } j \text{ reading } w \text{ along a simple path } \}

\[= L(r_{ij} \circ r_{ik} \cdot r_{kk} \cdot r_{kj}) \]
Claim 2
\[L \left(r_i u r_k r_k^* r_k^* i_j \right) \]
\[= \{ x \mid \text{G could go from } i \text{ to } j \text{ without passing through any intermediate state except possibly } k \} \]

Claim 3
\[G \& G' \text{ are equivalent} \]

Claim 4
\[\exists \text{ an NFA equivalent regular expression.} \]

Proof: NFA → GNFA → 2-state GNFA → E.RE.
by induction on \(k \), using Claim 1
In this example we begin with a three-state DFA. The steps in the conversion are shown in the following figure.

(a)

(b)

(c)

(d)

(e)

\[(a(aa \cup b)^*ab \cup bb)((ba \cup a)(aa \cup b)^*ab \cup bb)^*((ba \cup a)(aa \cup b)^* \cup \varepsilon) \cup a(aa \cup b)^*\]

Figure 1.69
Converting a three-state DFA to an equivalent regular expression
Summary

L is regular \iff

$L = L(M)$ for some DFA M

$L = L(N)$ \iff NFA N

$L = L(G)$ \iff GNEA G

$L = L(R)$ \iff Regular R