Regular expressions over Σ

\emptyset is an r.e.
ε r.e.

α for each $\alpha \in \Sigma$

if R_1 & R_2 are r.e.,
then so are

$(R_1 \cup R_2)$
$(R_1 \cdot R_2)$
(R_1^*)

The language denoted by R, $L(R)$
is:

$L(\emptyset) = \emptyset$
$L(\varepsilon) = \varepsilon \cdot \varepsilon$

$L(R_1 \cup R_2) = L(R_1) \cup L(R_2)$
Theorem:
A regular expression $R \exists$ an NFA Mr s.t. $L(R) = L(\text{CMR})$

Proof:
By induction on k, the # of \cup, \cdot, \ast operators in R

Base cases ($k=0$):
Then R is "$\phi"$, "ϵ", or "$a" for $a \in \Sigma$.

Explicitly give simple NFA's recognizing ϕ, \{E\}, and \{a\} for each $a \in \Sigma$ (details omitted)

Induction Step (R has $k > 0$ operators)

I.H.: assume that for all regular expressions R' with $\leq k-1$ operators,
\exists NFA Mr' recognizing $L(R')$

R has $k > 0$ operators. So $R \in (R_1, U R_2)$ or $(R_1 \cdot R_2)$ or $(R_1)^*$
where $R_1, (PR_2$ if any) have $\leq k-1$ operators. By I.H., $\exists Mr_1, (CMR_2) s.t.
L(R_i) = L(\text{CMR}_i), i=1,2$. Modify/join it/them as in previous proofs of closure under \cup, \cdot, \ast to get Mr s.t. $L(R) = L(\text{Mr})$.
Example

$$(ab)^* u a$$
Converse?

For every D/NFA \exists reg expr defining the same language

\[\text{Diagram 1} \rightarrow (ab)^* \]

\[\text{Diagram 2} \]
divisible by 5

pattern?

\[
\begin{align*}
0 & \rightarrow 1 & \rightarrow 2 & \rightarrow 4 & \rightarrow 3 & \rightarrow 1 & \rightarrow 0 \\
1 & \rightarrow 0 & \rightarrow 1 & \rightarrow 3 & \rightarrow 2 & \rightarrow 4 & \rightarrow 1
\end{align*}
\]
Every regular language can be described by a regular expression.

G NFA

\[a, b, c, a, b, a, b, c, a, b b, c \]

Note: No loss in assuming no edges into \(q_0 \) out of \(F \) only one \(q_f \in F \)
GNFA

\[G = (Q, \Sigma, \delta, q_0, q_f) \]

\(Q, \Sigma, q_0, q_f \in Q \) as usual

\[S: (Q - \{ q_f \}) \times (Q - \{ q_0 \}) \rightarrow R \Sigma \]

Definition

- \(G \) can be in state \(q \in Q \) after reading
 \(x \in \Sigma^* \) if \(\exists k \geq 0, \)
 \(\exists r_0, r_1, \ldots, r_k \in Q \)
 \(\exists x_1, \ldots, x_k \in \Sigma^* \)
 such that
 \(x = x_1 \cdot x_2 \cdot \ldots \cdot x_k \)
 \(r_0 = q \)
 \(r_k = q_f \)
 \(\forall 1 \leq i \leq k, x_i \in L(\delta(r_{i-1}, r_i)) \)

- \(L(G) = \{ x \mid G \text{ can be in state } q_0 \ldots q_f \} \)

Note: The syntax is a little different; maps state pair to label (reg. exp.) rather than state x symbol = new state.
Theorem

If L is accepted by a CNFA, then L is regular.

Proof Sketch: Replace edge labeled "r" by NFA equivalent to r based on previous theorem.