Notes on Subset Construction:
1) only the top 6 states are reachable from the start state, but all 16 are required by the construction.
2) ε moves come after Σ moves. E.g.,
$$\delta'(\{q_2\}, 1) = \emptyset,$$
not $\{q_4\}$.
Defn

\[M_1 \ \& \ M_2 \ \text{equivalent if} \ L(M_1) = L(M_2) \]

Theorem 1.39

A nfa N is equivalent dfa M

\[\text{given } N = (Q, \Sigma, \delta, q_0, F) \]

\[\text{build } M = (Q', \Sigma, \delta', q_0', F') \]

(Warm up: no ε-moves) → Full version: with ε-moves

\[Q' = 2^Q \]

\[q_0' = \text{E}(\{q_0\}) \]

\[F' = \{ R \subseteq Q \mid R \cap F \neq \emptyset \} \]

\[\forall a \in \Sigma, \forall R \subseteq Q, S'(R, a) = \bigcup_{r \in R} \text{E}(S(r, a)) \]

\[\forall R \subseteq Q, E(R) = \{ q \mid q \text{ reachable by} \]

\[\text{or more ε-moves from some} \ r \in R \} \]
Given NFA M, can build one for $L(M)^*$?
Given NFA M, can build one for $L(M)^*$?

No (may reject)

No may accept at +1

stuff

Yes!
Given NFA M, can build one for $L(M)^*$?

No
May accept extra stuff

Yes!
Given NFR \(M \), can build one \(FA \ L (M)^* \)?

Yes!
I. Suppose \(x \in L_1, y \in L_2 \)
Then \(M_1 \) reading \(x \) can reach a final state, say \(q \). By construction, \(q_20 \in \Sigma(q, \epsilon) \) (where \(q_20 = \text{init} \) of \(M_2 \))
And from \(q_20 \) reading \(y \), \(M_2 \) reaches a final state. \(\therefore M \) reading \(xy \) can reach a final state, so \(xy \) accepted by \(M \)
\(\therefore L_1 \cdot L_2 \subseteq L(M) \)
For \(i = 1, 2 \), \(NFA \, M_i \), \(L_i = L(M_i) \)

\[\begin{array}{c}
\text{For } i = 1, 2 \text{, } NFA \, M_i \text{, } L_i = L(M_i) \\
\end{array} \]

I. if \(x \in L_1 \), \(y \in L_2 \) then \(xy \in L(M) \)

II. Suppose \(w \in L(M) \)

So \(M \) reaches \(F \) reading \(w \).

But no state of \(M_1 \) is in \(F \) and only transitions between \(M_1 \) & \(M_2 \) are \(\epsilon \)-transitions from \(F_1 \) to \(F_2 \).

So, reading \(w \), \(M \) stays in \(M_1 \) a while (reading some prefix of \(w \), call it \(x \)) then jumps from some \(q \in F_1 \) to \(F_2 \) then runs around in \(M_2 \) reading rest of \(w \) (call it \(y \)) ending in \(F_2 = F \).

\(w = xy \) for \(x \in L_1 \) & \(y \in L_2 \)

\(L(M) \subseteq L_1 \circ L_2 \)
Regular expressions over Σ

\emptyset is an r.e.

ε is an r.e.

$a \ldots$ for each $a \in \Sigma$

if R_1 & R_2 are r.e.,

then so are

$(R_1 \cup R_2)$

$(R_1 \cdot R_2)$

(R_1^*)

The language denoted by R, $L(R)$

is:

$L(\emptyset) = \emptyset$

$L(\varepsilon) = \varepsilon \cup \varepsilon$

$L(R_1 \cup R_2) = L(R_1) \cup L(R_2)$
\[L(\phi^*) = \frac{L(\phi)}{r^2}, \quad \forall \phi^* \]

Short hands

\[\Sigma = \{ a, b, c \} \]

\[L((a \cup b) \cup c) = \Sigma \]

\[(\Sigma^* \cup \Sigma) \cdot a \]

\[(((a \cup b) \cup c)^*) \cdot \Sigma \cdot a \]

precedence & associativity

\[(a \cup b) \cup c \]

\[a \cup b \cdot c^* \]

\[(a \cup (b \cdot (c^*))) \]
"words ending with ".TXT"

\[\Sigma^* \cdot TXT \]

\[(a \cup b \cup \ldots \cup z)^* \cdot (a \cup \ldots \cup z \cup a \cup \ldots)^* \]

\[2 \cdot (2 \cdot d) \]

\[(\Sigma \Sigma)^* \]

\[0^* 10^* \]

\[(\Sigma \cup \Sigma)(\Sigma \cup \Sigma) \]

\[\Sigma \]

\[00 \in 0^* (10^*10^*)^* \]

\[00 \notin (0^*10^*10^*)^* \]

\[(0^*10^*10^*)^* \]

\[(d^*d^+ ud^+d^*) \cdot (\Sigma \cup E(\Sigma \cup tu-\)d^+)) \]